您的位置:

md5加密java的简单介绍

本文目录一览:

java用md5密码加密有必要吗?

有必要的,md5就是为了防止人偷窥,而当密码很短的时候,利用暴力搜索也比较容易搜索到,只有密码强度足够的情况下才有意义,你想转换也就没那么容易了。md5类hash算法的设计初衷就是单向,即不可逆。

java MD5加密,解释解释!

给你解释一下for里面这段代码

byte byte0 = md[i];//取得md数组中第i个元素

str[k++] = hexDigits[byte0 4 0xf ];取得byte0的前四位,然后找到转化成16进制字符,如果byte0为10001000(二进制)那么前四位就是1000,十进制就是8,而 hexDigits[8]就=‘8’

str[k++] = hexDigits[byte0 0xf ]; //同理取得byte0的后四位,转化成16进制字符。

java md5

import java.lang.reflect.*;

/*************************************************

keyBean 类实现了RSA Data Security, Inc.在提交给IETF

的RFC1321中的keyBean message-digest 算法。

*************************************************/

public class keyBean {

/* 下面这些S11-S44实际上是一个4*4的矩阵,在原始的C实现中是用#define 实现的,

这里把它们实现成为static final是表示了只读,切能在同一个进程空间内的多个

Instance间共享*/

static final int S11 = 7;

static final int S12 = 12;

static final int S13 = 17;

static final int S14 = 22;

static final int S21 = 5;

static final int S22 = 9;

static final int S23 = 14;

static final int S24 = 20;

static final int S31 = 4;

static final int S32 = 11;

static final int S33 = 16;

static final int S34 = 23;

static final int S41 = 6;

static final int S42 = 10;

static final int S43 = 15;

static final int S44 = 21;

static final byte[] PADDING = { -128, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

/* 下面的三个成员是keyBean计算过程中用到的3个核心数据,在原始的C实现中

被定义到keyBean_CTX结构中

*/

private long[] state = new long[4]; // state (ABCD)

private long[] count = new long[2]; // number of bits, modulo 2^64 (lsb first)

private byte[] buffer = new byte[64]; // input buffer

/* digestHexStr是keyBean的唯一一个公共成员,是最新一次计算结果的

16进制ASCII表示.

*/

public String digestHexStr;

/* digest,是最新一次计算结果的2进制内部表示,表示128bit的keyBean值.

*/

private byte[] digest = new byte[16];

/*

getkeyBeanofStr是类keyBean最主要的公共方法,入口参数是你想要进行keyBean变换的字符串

返回的是变换完的结果,这个结果是从公共成员digestHexStr取得的.

*/

public String getkeyBeanofStr(String inbuf) {

keyBeanInit();

keyBeanUpdate(inbuf.getBytes(), inbuf.length());

keyBeanFinal();

digestHexStr = "";

for (int i = 0; i 16; i++) {

digestHexStr += byteHEX(digest[i]);

}

return digestHexStr;

}

// 这是keyBean这个类的标准构造函数,JavaBean要求有一个public的并且没有参数的构造函数

public keyBean() {

keyBeanInit();

return;

}

/* keyBeanInit是一个初始化函数,初始化核心变量,装入标准的幻数 */

private void keyBeanInit() {

count[0] = 0L;

count[1] = 0L;

///* Load magic initialization constants.

state[0] = 0x67452301L;

state[1] = 0xefcdab89L;

state[2] = 0x98badcfeL;

state[3] = 0x10325476L;

return;

}

/* F, G, H ,I 是4个基本的keyBean函数,在原始的keyBean的C实现中,由于它们是

简单的位运算,可能出于效率的考虑把它们实现成了宏,在java中,我们把它们

实现成了private方法,名字保持了原来C中的。 */

private long F(long x, long y, long z) {

return (x y) | ((~x) z);

}

private long G(long x, long y, long z) {

return (x z) | (y (~z));

}

private long H(long x, long y, long z) {

return x ^ y ^ z;

}

private long I(long x, long y, long z) {

return y ^ (x | (~z));

}

/*

FF,GG,HH和II将调用F,G,H,I进行近一步变换

FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.

Rotation is separate from addition to prevent recomputation.

*/

private long FF(long a, long b, long c, long d, long x, long s,

long ac) {

a += F (b, c, d) + x + ac;

a = ((int) a s) | ((int) a (32 - s));

a += b;

return a;

}

private long GG(long a, long b, long c, long d, long x, long s,

long ac) {

a += G (b, c, d) + x + ac;

a = ((int) a s) | ((int) a (32 - s));

a += b;

return a;

}

private long HH(long a, long b, long c, long d, long x, long s,

long ac) {

a += H (b, c, d) + x + ac;

a = ((int) a s) | ((int) a (32 - s));

a += b;

return a;

}

private long II(long a, long b, long c, long d, long x, long s,

long ac) {

a += I (b, c, d) + x + ac;

a = ((int) a s) | ((int) a (32 - s));

a += b;

return a;

}

/*

keyBeanUpdate是keyBean的主计算过程,inbuf是要变换的字节串,inputlen是长度,这个

函数由getkeyBeanofStr调用,调用之前需要调用keyBeaninit,因此把它设计成private的

*/

private void keyBeanUpdate(byte[] inbuf, int inputLen) {

int i, index, partLen;

byte[] block = new byte[64];

index = (int)(count[0] 3) 0x3F;

// /* Update number of bits */

if ((count[0] += (inputLen 3)) (inputLen 3))

count[1]++;

count[1] += (inputLen 29);

partLen = 64 - index;

// Transform as many times as possible.

if (inputLen = partLen) {

keyBeanMemcpy(buffer, inbuf, index, 0, partLen);

keyBeanTransform(buffer);

for (i = partLen; i + 63 inputLen; i += 64) {

keyBeanMemcpy(block, inbuf, 0, i, 64);

keyBeanTransform (block);

}

index = 0;

} else

i = 0;

///* Buffer remaining input */

keyBeanMemcpy(buffer, inbuf, index, i, inputLen - i);

}

/*

keyBeanFinal整理和填写输出结果

*/

private void keyBeanFinal () {

byte[] bits = new byte[8];

int index, padLen;

///* Save number of bits */

Encode (bits, count, 8);

///* Pad out to 56 mod 64.

index = (int)(count[0] 3) 0x3f;

padLen = (index 56) ? (56 - index) : (120 - index);

keyBeanUpdate (PADDING, padLen);

///* Append length (before padding) */

keyBeanUpdate(bits, 8);

///* Store state in digest */

Encode (digest, state, 16);

}

/* keyBeanMemcpy是一个内部使用的byte数组的块拷贝函数,从input的inpos开始把len长度的

字节拷贝到output的outpos位置开始

*/

private void keyBeanMemcpy (byte[] output, byte[] input,

int outpos, int inpos, int len)

{

int i;

for (i = 0; i len; i++)

output[outpos + i] = input[inpos + i];

}

/*

keyBeanTransform是keyBean核心变换程序,有keyBeanUpdate调用,block是分块的原始字节

*/

private void keyBeanTransform (byte block[]) {

long a = state[0], b = state[1], c = state[2], d = state[3];

long[] x = new long[16];

Decode (x, block, 64);

/* Round 1 */

a = FF (a, b, c, d, x[0], S11, 0xd76aa478L); /* 1 */

d = FF (d, a, b, c, x[1], S12, 0xe8c7b756L); /* 2 */

c = FF (c, d, a, b, x[2], S13, 0x242070dbL); /* 3 */

b = FF (b, c, d, a, x[3], S14, 0xc1bdceeeL); /* 4 */

a = FF (a, b, c, d, x[4], S11, 0xf57c0fafL); /* 5 */

d = FF (d, a, b, c, x[5], S12, 0x4787c62aL); /* 6 */

c = FF (c, d, a, b, x[6], S13, 0xa8304613L); /* 7 */

b = FF (b, c, d, a, x[7], S14, 0xfd469501L); /* 8 */

a = FF (a, b, c, d, x[8], S11, 0x698098d8L); /* 9 */

d = FF (d, a, b, c, x[9], S12, 0x8b44f7afL); /* 10 */

c = FF (c, d, a, b, x[10], S13, 0xffff5bb1L); /* 11 */

b = FF (b, c, d, a, x[11], S14, 0x895cd7beL); /* 12 */

a = FF (a, b, c, d, x[12], S11, 0x6b901122L); /* 13 */

d = FF (d, a, b, c, x[13], S12, 0xfd987193L); /* 14 */

c = FF (c, d, a, b, x[14], S13, 0xa679438eL); /* 15 */

b = FF (b, c, d, a, x[15], S14, 0x49b40821L); /* 16 */

/* Round 2 */

a = GG (a, b, c, d, x[1], S21, 0xf61e2562L); /* 17 */

d = GG (d, a, b, c, x[6], S22, 0xc040b340L); /* 18 */

c = GG (c, d, a, b, x[11], S23, 0x265e5a51L); /* 19 */

b = GG (b, c, d, a, x[0], S24, 0xe9b6c7aaL); /* 20 */

a = GG (a, b, c, d, x[5], S21, 0xd62f105dL); /* 21 */

d = GG (d, a, b, c, x[10], S22, 0x2441453L); /* 22 */

c = GG (c, d, a, b, x[15], S23, 0xd8a1e681L); /* 23 */

b = GG (b, c, d, a, x[4], S24, 0xe7d3fbc8L); /* 24 */

a = GG (a, b, c, d, x[9], S21, 0x21e1cde6L); /* 25 */

d = GG (d, a, b, c, x[14], S22, 0xc33707d6L); /* 26 */

c = GG (c, d, a, b, x[3], S23, 0xf4d50d87L); /* 27 */

b = GG (b, c, d, a, x[8], S24, 0x455a14edL); /* 28 */

a = GG (a, b, c, d, x[13], S21, 0xa9e3e905L); /* 29 */

d = GG (d, a, b, c, x[2], S22, 0xfcefa3f8L); /* 30 */

c = GG (c, d, a, b, x[7], S23, 0x676f02d9L); /* 31 */

b = GG (b, c, d, a, x[12], S24, 0x8d2a4c8aL); /* 32 */

/* Round 3 */

a = HH (a, b, c, d, x[5], S31, 0xfffa3942L); /* 33 */

d = HH (d, a, b, c, x[8], S32, 0x8771f681L); /* 34 */

c = HH (c, d, a, b, x[11], S33, 0x6d9d6122L); /* 35 */

b = HH (b, c, d, a, x[14], S34, 0xfde5380cL); /* 36 */

a = HH (a, b, c, d, x[1], S31, 0xa4beea44L); /* 37 */

d = HH (d, a, b, c, x[4], S32, 0x4bdecfa9L); /* 38 */

c = HH (c, d, a, b, x[7], S33, 0xf6bb4b60L); /* 39 */

b = HH (b, c, d, a, x[10], S34, 0xbebfbc70L); /* 40 */

a = HH (a, b, c, d, x[13], S31, 0x289b7ec6L); /* 41 */

d = HH (d, a, b, c, x[0], S32, 0xeaa127faL); /* 42 */

c = HH (c, d, a, b, x[3], S33, 0xd4ef3085L); /* 43 */

b = HH (b, c, d, a, x[6], S34, 0x4881d05L); /* 44 */

a = HH (a, b, c, d, x[9], S31, 0xd9d4d039L); /* 45 */

d = HH (d, a, b, c, x[12], S32, 0xe6db99e5L); /* 46 */

c = HH (c, d, a, b, x[15], S33, 0x1fa27cf8L); /* 47 */

b = HH (b, c, d, a, x[2], S34, 0xc4ac5665L); /* 48 */

/* Round 4 */

a = II (a, b, c, d, x[0], S41, 0xf4292244L); /* 49 */

d = II (d, a, b, c, x[7], S42, 0x432aff97L); /* 50 */

c = II (c, d, a, b, x[14], S43, 0xab9423a7L); /* 51 */

b = II (b, c, d, a, x[5], S44, 0xfc93a039L); /* 52 */

a = II (a, b, c, d, x[12], S41, 0x655b59c3L); /* 53 */

d = II (d, a, b, c, x[3], S42, 0x8f0ccc92L); /* 54 */

c = II (c, d, a, b, x[10], S43, 0xffeff47dL); /* 55 */

b = II (b, c, d, a, x[1], S44, 0x85845dd1L); /* 56 */

a = II (a, b, c, d, x[8], S41, 0x6fa87e4fL); /* 57 */

d = II (d, a, b, c, x[15], S42, 0xfe2ce6e0L); /* 58 */

c = II (c, d, a, b, x[6], S43, 0xa3014314L); /* 59 */

b = II (b, c, d, a, x[13], S44, 0x4e0811a1L); /* 60 */

a = II (a, b, c, d, x[4], S41, 0xf7537e82L); /* 61 */

d = II (d, a, b, c, x[11], S42, 0xbd3af235L); /* 62 */

c = II (c, d, a, b, x[2], S43, 0x2ad7d2bbL); /* 63 */

b = II (b, c, d, a, x[9], S44, 0xeb86d391L); /* 64 */

state[0] += a;

state[1] += b;

state[2] += c;

state[3] += d;

}

/*Encode把long数组按顺序拆成byte数组,因为java的long类型是64bit的,

只拆低32bit,以适应原始C实现的用途

*/

private void Encode (byte[] output, long[] input, int len) {

int i, j;

for (i = 0, j = 0; j len; i++, j += 4) {

output[j] = (byte)(input[i] 0xffL);

output[j + 1] = (byte)((input[i] 8) 0xffL);

output[j + 2] = (byte)((input[i] 16) 0xffL);

output[j + 3] = (byte)((input[i] 24) 0xffL);

}

}

/*Decode把byte数组按顺序合成成long数组,因为java的long类型是64bit的,

只合成低32bit,高32bit清零,以适应原始C实现的用途

*/

private void Decode (long[] output, byte[] input, int len) {

int i, j;

for (i = 0, j = 0; j len; i++, j += 4)

output[i] = b2iu(input[j]) |

(b2iu(input[j + 1]) 8) |

(b2iu(input[j + 2]) 16) |

(b2iu(input[j + 3]) 24);

return;

}

/*

b2iu是我写的一个把byte按照不考虑正负号的原则的”升位”程序,因为java没有unsigned运算

*/

public static long b2iu(byte b) {

return b 0 ? b 0x7F + 128 : b;

}

/*byteHEX(),用来把一个byte类型的数转换成十六进制的ASCII表示,

因为java中的byte的toString无法实现这一点,我们又没有C语言中的

sprintf(outbuf,"%02X",ib)

*/

public static String byteHEX(byte ib) {

char[] Digit = { '0','1','2','3','4','5','6','7','8','9',

'A','B','C','D','E','F' };

char [] ob = new char[2];

ob[0] = Digit[(ib 4) 0X0F];

ob[1] = Digit[ib 0X0F];

String s = new String(ob);

return s;

}

public static void main(String args[]) {

keyBean m = new keyBean();

if (Array.getLength(args) == 0) { //如果没有参数,执行标准的Test Suite

System.out.println("keyBean Test suite:");

System.out.println("keyBean(\\"\\"):"+m.getkeyBeanofStr(""));

System.out.println("keyBean(\\"a\\"):"+m.getkeyBeanofStr("a"));

System.out.println("keyBean(\\"abc\\"):"+m.getkeyBeanofStr("abc"));

System.out.println("keyBean(\\"message digest\\"):"+m.getkeyBeanofStr("message digest"));

System.out.println("keyBean(\\"abcdefghijklmnopqrstuvwxyz\\"):"+

m.getkeyBeanofStr("abcdefghijklmnopqrstuvwxyz"));

System.out.println("keyBean(\\"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789\\"):"+

m.getkeyBeanofStr("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"));

}

else

System.out.println("keyBean(" + args[0] + ")=" + m.getkeyBeanofStr(args[0]));

}

}

java的md5的加密算法代码

import java.lang.reflect.*;

/*******************************************************************************

* keyBean 类实现了RSA Data Security, Inc.在提交给IETF 的RFC1321中的keyBean message-digest

* 算法。

******************************************************************************/

public class keyBean {

/*

* 下面这些S11-S44实际上是一个4*4的矩阵,在原始的C实现中是用#define 实现的, 这里把它们实现成为static

* final是表示了只读,切能在同一个进程空间内的多个 Instance间共享

*/

static final int S11 = 7;

static final int S12 = 12;

static final int S13 = 17;

static final int S14 = 22;

static final int S21 = 5;

static final int S22 = 9;

static final int S23 = 14;

static final int S24 = 20;

static final int S31 = 4;

static final int S32 = 11;

static final int S33 = 16;

static final int S34 = 23;

static final int S41 = 6;

static final int S42 = 10;

static final int S43 = 15;

static final int S44 = 21;

static final byte[] PADDING = { -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0 };

/*

* 下面的三个成员是keyBean计算过程中用到的3个核心数据,在原始的C实现中 被定义到keyBean_CTX结构中

*/

private long[] state = new long[4]; // state (ABCD)

private long[] count = new long[2]; // number of bits, modulo 2^64 (lsb

// first)

private byte[] buffer = new byte[64]; // input buffer

/*

* digestHexStr是keyBean的唯一一个公共成员,是最新一次计算结果的 16进制ASCII表示.

*/

public String digestHexStr;

/*

* digest,是最新一次计算结果的2进制内部表示,表示128bit的keyBean值.

*/

private byte[] digest = new byte[16];

/*

* getkeyBeanofStr是类keyBean最主要的公共方法,入口参数是你想要进行keyBean变换的字符串

* 返回的是变换完的结果,这个结果是从公共成员digestHexStr取得的.

*/

public String getkeyBeanofStr(String inbuf) {

keyBeanInit();

keyBeanUpdate(inbuf.getBytes(), inbuf.length());

keyBeanFinal();

digestHexStr = "";

for (int i = 0; i 16; i++) {

digestHexStr += byteHEX(digest[i]);

}

return digestHexStr;

}

// 这是keyBean这个类的标准构造函数,JavaBean要求有一个public的并且没有参数的构造函数

public keyBean() {

keyBeanInit();

return;

}

/* keyBeanInit是一个初始化函数,初始化核心变量,装入标准的幻数 */

private void keyBeanInit() {

count[0] = 0L;

count[1] = 0L;

// /* Load magic initialization constants.

state[0] = 0x67452301L;

state[1] = 0xefcdab89L;

state[2] = 0x98badcfeL;

state[3] = 0x10325476L;

return;

}

/*

* F, G, H ,I 是4个基本的keyBean函数,在原始的keyBean的C实现中,由于它们是

* 简单的位运算,可能出于效率的考虑把它们实现成了宏,在java中,我们把它们 实现成了private方法,名字保持了原来C中的。

*/

private long F(long x, long y, long z) {

return (x y) | ((~x) z);

}

private long G(long x, long y, long z) {

return (x z) | (y (~z));

}

private long H(long x, long y, long z) {

return x ^ y ^ z;

}

private long I(long x, long y, long z) {

return y ^ (x | (~z));

}

/*

* FF,GG,HH和II将调用F,G,H,I进行近一步变换 FF, GG, HH, and II transformations for

* rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent

* recomputation.

*/

private long FF(long a, long b, long c, long d, long x, long s, long ac) {

a += F(b, c, d) + x + ac;

a = ((int) a s) | ((int) a (32 - s));

a += b;

return a;

}

private long GG(long a, long b, long c, long d, long x, long s, long ac) {

a += G(b, c, d) + x + ac;

a = ((int) a s) | ((int) a (32 - s));

a += b;

return a;

}

private long HH(long a, long b, long c, long d, long x, long s, long ac) {

a += H(b, c, d) + x + ac;

a = ((int) a s) | ((int) a (32 - s));

a += b;

return a;

}

private long II(long a, long b, long c, long d, long x, long s, long ac) {

a += I(b, c, d) + x + ac;

a = ((int) a s) | ((int) a (32 - s));

a += b;

return a;

}

/*

* keyBeanUpdate是keyBean的主计算过程,inbuf是要变换的字节串,inputlen是长度,这个

* 函数由getkeyBeanofStr调用,调用之前需要调用keyBeaninit,因此把它设计成private的

*/

private void keyBeanUpdate(byte[] inbuf, int inputLen) {

int i, index, partLen;

byte[] block = new byte[64];

index = (int) (count[0] 3) 0x3F;

// /* Update number of bits */

if ((count[0] += (inputLen 3)) (inputLen 3))

count[1]++;

count[1] += (inputLen 29);

partLen = 64 - index;

// Transform as many times as possible.

if (inputLen = partLen) {

keyBeanMemcpy(buffer, inbuf, index, 0, partLen);

keyBeanTransform(buffer);

for (i = partLen; i + 63 inputLen; i += 64) {

keyBeanMemcpy(block, inbuf, 0, i, 64);

keyBeanTransform(block);

}

index = 0;

} else

i = 0;

// /* Buffer remaining input */

keyBeanMemcpy(buffer, inbuf, index, i, inputLen - i);

}

/*

* keyBeanFinal整理和填写输出结果

*/

private void keyBeanFinal() {

byte[] bits = new byte[8];

int index, padLen;

// /* Save number of bits */

Encode(bits, count, 8);

// /* Pad out to 56 mod 64.

index = (int) (count[0] 3) 0x3f;

padLen = (index 56) ? (56 - index) : (120 - index);

keyBeanUpdate(PADDING, padLen);

// /* Append length (before padding) */

keyBeanUpdate(bits, 8);

// /* Store state in digest */

Encode(digest, state, 16);

}

/*

* keyBeanMemcpy是一个内部使用的byte数组的块拷贝函数,从input的inpos开始把len长度的

* 字节拷贝到output的outpos位置开始

*/

private void keyBeanMemcpy(byte[] output, byte[] input, int outpos,

int inpos, int len) {

int i;

for (i = 0; i len; i++)

output[outpos + i] = input[inpos + i];

}

/*

* keyBeanTransform是keyBean核心变换程序,有keyBeanUpdate调用,block是分块的原始字节

*/

private void keyBeanTransform(byte block[]) {

long a = state[0], b = state[1], c = state[2], d = state[3];

long[] x = new long[16];

Decode(x, block, 64);

/* Round 1 */

a = FF(a, b, c, d, x[0], S11, 0xd76aa478L); /* 1 */

d = FF(d, a, b, c, x[1], S12, 0xe8c7b756L); /* 2 */

c = FF(c, d, a, b, x[2], S13, 0x242070dbL); /* 3 */

b = FF(b, c, d, a, x[3], S14, 0xc1bdceeeL); /* 4 */

a = FF(a, b, c, d, x[4], S11, 0xf57c0fafL); /* 5 */

d = FF(d, a, b, c, x[5], S12, 0x4787c62aL); /* 6 */

c = FF(c, d, a, b, x[6], S13, 0xa8304613L); /* 7 */

b = FF(b, c, d, a, x[7], S14, 0xfd469501L); /* 8 */

a = FF(a, b, c, d, x[8], S11, 0x698098d8L); /* 9 */

d = FF(d, a, b, c, x[9], S12, 0x8b44f7afL); /* 10 */

c = FF(c, d, a, b, x[10], S13, 0xffff5bb1L); /* 11 */

b = FF(b, c, d, a, x[11], S14, 0x895cd7beL); /* 12 */

a = FF(a, b, c, d, x[12], S11, 0x6b901122L); /* 13 */

d = FF(d, a, b, c, x[13], S12, 0xfd987193L); /* 14 */

c = FF(c, d, a, b, x[14], S13, 0xa679438eL); /* 15 */

b = FF(b, c, d, a, x[15], S14, 0x49b40821L); /* 16 */

/* Round 2 */

a = GG(a, b, c, d, x[1], S21, 0xf61e2562L); /* 17 */

d = GG(d, a, b, c, x[6], S22, 0xc040b340L); /* 18 */

c = GG(c, d, a, b, x[11], S23, 0x265e5a51L); /* 19 */

b = GG(b, c, d, a, x[0], S24, 0xe9b6c7aaL); /* 20 */

a = GG(a, b, c, d, x[5], S21, 0xd62f105dL); /* 21 */

d = GG(d, a, b, c, x[10], S22, 0x2441453L); /* 22 */

c = GG(c, d, a, b, x[15], S23, 0xd8a1e681L); /* 23 */

b = GG(b, c, d, a, x[4], S24, 0xe7d3fbc8L); /* 24 */

a = GG(a, b, c, d, x[9], S21, 0x21e1cde6L); /* 25 */

d = GG(d, a, b, c, x[14], S22, 0xc33707d6L); /* 26 */

c = GG(c, d, a, b, x[3], S23, 0xf4d50d87L); /* 27 */

b = GG(b, c, d, a, x[8], S24, 0x455a14edL); /* 28 */

a = GG(a, b, c, d, x[13], S21, 0xa9e3e905L); /* 29 */

d = GG(d, a, b, c, x[2], S22, 0xfcefa3f8L); /* 30 */

c = GG(c, d, a, b, x[7], S23, 0x676f02d9L); /* 31 */

b = GG(b, c, d, a, x[12], S24, 0x8d2a4c8aL); /* 32 */

/* Round 3 */

a = HH(a, b, c, d, x[5], S31, 0xfffa3942L); /* 33 */

d = HH(d, a, b, c, x[8], S32, 0x8771f681L); /* 34 */

c = HH(c, d, a, b, x[11], S33, 0x6d9d6122L); /* 35 */

b = HH(b, c, d, a, x[14], S34, 0xfde5380cL); /* 36 */

a = HH(a, b, c, d, x[1], S31, 0xa4beea44L); /* 37 */

d = HH(d, a, b, c, x[4], S32, 0x4bdecfa9L); /* 38 */

c = HH(c, d, a, b, x[7], S33, 0xf6bb4b60L); /* 39 */

b = HH(b, c, d, a, x[10], S34, 0xbebfbc70L); /* 40 */

a = HH(a, b, c, d, x[13], S31, 0x289b7ec6L); /* 41 */

d = HH(d, a, b, c, x[0], S32, 0xeaa127faL); /* 42 */

c = HH(c, d, a, b, x[3], S33, 0xd4ef3085L); /* 43 */

b = HH(b, c, d, a, x[6], S34, 0x4881d05L); /* 44 */

a = HH(a, b, c, d, x[9], S31, 0xd9d4d039L); /* 45 */

d = HH(d, a, b, c, x[12], S32, 0xe6db99e5L); /* 46 */

c = HH(c, d, a, b, x[15], S33, 0x1fa27cf8L); /* 47 */

b = HH(b, c, d, a, x[2], S34, 0xc4ac5665L); /* 48 */

/* Round 4 */

a = II(a, b, c, d, x[0], S41, 0xf4292244L); /* 49 */

d = II(d, a, b, c, x[7], S42, 0x432aff97L); /* 50 */

c = II(c, d, a, b, x[14], S43, 0xab9423a7L); /* 51 */

b = II(b, c, d, a, x[5], S44, 0xfc93a039L); /* 52 */

a = II(a, b, c, d, x[12], S41, 0x655b59c3L); /* 53 */

d = II(d, a, b, c, x[3], S42, 0x8f0ccc92L); /* 54 */

c = II(c, d, a, b, x[10], S43, 0xffeff47dL); /* 55 */

b = II(b, c, d, a, x[1], S44, 0x85845dd1L); /* 56 */

a = II(a, b, c, d, x[8], S41, 0x6fa87e4fL); /* 57 */

d = II(d, a, b, c, x[15], S42, 0xfe2ce6e0L); /* 58 */

c = II(c, d, a, b, x[6], S43, 0xa3014314L); /* 59 */

b = II(b, c, d, a, x[13], S44, 0x4e0811a1L); /* 60 */

a = II(a, b, c, d, x[4], S41, 0xf7537e82L); /* 61 */

d = II(d, a, b, c, x[11], S42, 0xbd3af235L); /* 62 */

c = II(c, d, a, b, x[2], S43, 0x2ad7d2bbL); /* 63 */

b = II(b, c, d, a, x[9], S44, 0xeb86d391L); /* 64 */

state[0] += a;

state[1] += b;

state[2] += c;

state[3] += d;

}

/*

* Encode把long数组按顺序拆成byte数组,因为java的long类型是64bit的, 只拆低32bit,以适应原始C实现的用途

*/

private void Encode(byte[] output, long[] input, int len) {

int i, j;

for (i = 0, j = 0; j len; i++, j += 4) {

output[j] = (byte) (input[i] 0xffL);

output[j + 1] = (byte) ((input[i] 8) 0xffL);

output[j + 2] = (byte) ((input[i] 16) 0xffL);

output[j + 3] = (byte) ((input[i] 24) 0xffL);

}

}

/*

* Decode把byte数组按顺序合成成long数组,因为java的long类型是64bit的,

* 只合成低32bit,高32bit清零,以适应原始C实现的用途

*/

private void Decode(long[] output, byte[] input, int len) {

int i, j;

for (i = 0, j = 0; j len; i++, j += 4)

output[i] = b2iu(input[j]) | (b2iu(input[j + 1]) 8)

| (b2iu(input[j + 2]) 16) | (b2iu(input[j + 3]) 24);

return;

}

/*

* b2iu是我写的一个把byte按照不考虑正负号的原则的”升位”程序,因为java没有unsigned运算

*/

public static long b2iu(byte b) {

return b 0 ? b 0x7F + 128 : b;

}

/*

* byteHEX(),用来把一个byte类型的数转换成十六进制的ASCII表示,

* 因为java中的byte的toString无法实现这一点,我们又没有C语言中的 sprintf(outbuf,"%02X",ib)

*/

public static String byteHEX(byte ib) {

char[] Digit = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',

'B', 'C', 'D', 'E', 'F' };

char[] ob = new char[2];

ob[0] = Digit[(ib 4) 0X0F];

ob[1] = Digit[ib 0X0F];

String s = new String(ob);

return s;

}

public static void main(String args[]) {

keyBean m = new keyBean();

if (Array.getLength(args) == 0) { // 如果没有参数,执行标准的Test Suite

System.out.println("keyBean Test suite:");

System.out.println("keyBean(\"):" + m.getkeyBeanofStr(""));

System.out.println("keyBean(\"a\"):" + m.getkeyBeanofStr("a"));

System.out.println("keyBean(\"abc\"):" + m.getkeyBeanofStr("abc"));

System.out.println("keyBean(\"message digest\"):"

+ m.getkeyBeanofStr("message digest"));

System.out.println("keyBean(\"abcdefghijklmnopqrstuvwxyz\"):"

+ m.getkeyBeanofStr("abcdefghijklmnopqrstuvwxyz"));

System.out

.println("keyBean(\"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789\"):"

+ m

.getkeyBeanofStr("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"));

} else

System.out.println("keyBean(" + args[0] + ")="

+ m.getkeyBeanofStr(args[0]));

}

}

java 中如何进行md5加密

JDK里面有一个java.security.MessageDigest类,这个类就是用来加密的。

加密代码如下:

String token = System.currentTimeMillis()+new Random().nextInt()+"";

try {

MessageDigest md = MessageDigest.getInstance("MD5");

byte[] md5 = md.digest(token.getBytes());

} catch (Exception e) {

throw new RuntimeException(e);

}

这个byte类型的数组就是使用MD5加密后的结果