本文目录一览:
java编写求最大公约数和最小公倍数的程序
输入两个正整数m和n, 求其最大公约数和最小公倍数.
用辗转相除法求最大公约数
算法描述:
m对n求余为a, 若a不等于0
则 m - n, n - a, 继续求余
否则 n 为最大公约数
最小公倍数 = 两个数的积 / 最大公约数
#include
int main()
{
int m, n;
int m_cup, n_cup, res; /*被除数, 除数, 余数*/
printf("Enter two integer:\n");
scanf("%d %d", m, n);
if (m 0 n 0)
{
m_cup = m;
n_cup = n;
res = m_cup % n_cup;
while (res != 0)
{
m_cup = n_cup;
n_cup = res;
res = m_cup % n_cup;
}
printf("Greatest common divisor: %d\n", n_cup);
printf("Lease common multiple : %d\n", m * n / n_cup);
}
else printf("Error!\n");
return 0;
}
★ 关于辗转相除法, 搜了一下, 在我国古代的《九章算术》中就有记载,现摘录如下:
约分术曰:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法,实际上就是辗转相除法。
辗转相除法求最大公约数,是一种比较好的方法,比较快。
对于52317和75569两个数,你能迅速地求出它们的最大公约数吗?一般来说你会找一找公共的使因子,这题可麻烦了,不好找,质因子大。
现在教你用辗转相除法来求最大公约数。
先用较大的75569除以52317,得商1,余数23252,再以52317除以23252,得商2,余数是5813,再用23252做被除数,5813做除数,正好除尽得商数4。这样5813就是75569和52317的最大公约数。你要是用分解使因数的办法,肯定找不到。
那么,这辗转相除法为什么能得到最大公约数呢?下面我就给大伙谈谈。
比如说有要求a、b两个整数的最大公约数,a>b,那么我们先用a除以b,得到商8,余数r1:a÷b=q1…r1我们当然也可以把上面这个式子改写成乘法式:a=bq1+r1------l)
如果r1=0,那么b就是a、b的最大公约数3。要是r1≠0,就继续除,用b除以r1,我们也可以有和上面一样的式子:
b=r1q2+r2-------2)
如果余数r2=0,那么r1就是所求的最大公约数3。为什么呢?因为如果2)式变成了b=r1q2,那么b1r1的公约数就一定是a1b的公约数。这是因为一个数能同时除尽b和r1,那么由l)式,就一定能整除a,从而也是a1b的公约数。
反过来,如果一个数d,能同时整除a1b,那么由1)式,也一定能整除r1,从而也有d是b1r1的公约数。
这样,a和b的公约数与b和r1的公约数完全一样,那么这两对的最大公约数也一定相同。那b1r1的最大公约数,在r1=0时,不就是r1吗?所以a和b的最大公约数也是r1了。
有人会说,那r2不等于0怎么办?那当然是继续往下做,用r1除以r2,……直到余数为零为止。
在这种方法里,先做除数的,后一步就成了被除数,这就是辗转相除法名字的来历吧。
用Java语言求m,n的最大公约数,三种方法
1.从1开始循环。分别求出m、n的约数。找出最大公约数。
2.判断m、n的大小,从较小的开始循环,每次减一,判断是否为公约数。如果是,则为最大公约数,break;
3.2反过来,从小到大循环,找最大的。
公约数判断:
m%i=0n/i=0。
举第二个例子:
public
class
Test
{
public
static
int
getN(int
m,int
n){
int
i
=
mn?n:m;
for(;i0;i--){
if(m%i==0n%i==0){
System.out.println("m、n的最大公约数为"+i);
break;
}
}
return
i;
}
public
static
void
main(String[]
args)
{
System.out.println(getN(100,
88));
}
}
java最大公约数算法
三种算法:
//欧几里得算法(辗转相除):
public static int gcd(int m,int n) {
if(mn) {
int k=m;
m=n;
n=k;
}
//if(m%n!=0) {
// m=m%n;
// return gcd(m,n);
//}
//return n;
return m%n == 0?n:gcd(n,m%n);
}
//连续整数检测算法:
public static int gcd1(int m,int n) {
int t;
if(mn) {
t=m;
}else {
t=n;
}
while(m%t!=0||n%t!=0){
t--;
}
return t;
}
//公因数法:(更相减损)
public static int gcd2(int m,int n) {
int i=0,t,x;
while(m%2==0n%2==0) {
m/=2;
n/=2;
i++;
}
if(mn){
t=m;
m=n;
n=t;
}
while(n!=(m-n)) {
x=m-n;
m=(nx)?n:x;
n=(nx)?n:x;
}
if(i==0)
return n;
else
return (int)Math.pow(2, i)*n;
}
public static void main(String[] args) {
System.out.println("请输入两个正整数:");
Scanner scan = new Scanner(System.in);
Scanner scan2=new Scanner(System.in);
int m=scan.nextInt();
int n=scan2.nextInt();
System.out.println("欧几里得算法求最大公约数是:"+gcd(m,n));
System.out.println("连续整数检测算法求最大公约数是:"+gcd1(m,n));
System.out.println("公因数法求最大公约数是:"+gcd2(m,n));
}
}
JAVA如何编写程序求两个数的最大公约数和最小公倍数?
[java] view plaincopy\x0d\x0aimport java.util.*; \x0d\x0a \x0d\x0a/*求最大公约数和最小公倍数*/ \x0d\x0apublic class MaxCommonDivisorAndMinCommonMultiple { \x0d\x0a \x0d\x0a public static void main(String[] args) { \x0d\x0a Scanner scan = new Scanner(System.in);// 接收控制台输入的信息 \x0d\x0a \x0d\x0a System.out.print("请输入第一个整数:"); \x0d\x0a int num1 = scan.nextInt(); // 取出控制台输入的信息 \x0d\x0a \x0d\x0a System.out.print("请输入第二个整数:"); \x0d\x0a int num2 = scan.nextInt(); // 取出控制台输入的信息 \x0d\x0a \x0d\x0a System.out.println(maxCommonDivisor(num1, num2));// 调用maxCommonDivisor()方法 \x0d\x0a System.out.println(minCommonMultiple(num1, num2));// 调用minCommonMultiple()方法 \x0d\x0a } \x0d\x0a \x0d\x0a // 递归法求最大公约数 \x0d\x0a public static int maxCommonDivisor(int m, int n) { \x0d\x0a if (m n,若mn,若m
回答于 2022-11-16