随着互联网应用的快速发展,处理高并发请求变得尤为重要。分布式消息队列作为一种解决高并发的方式已经广泛应用。Apache Kafka是一个高效、可扩展、支持分布式处理的开源消息队列。Kafka能够处理数百万级别的请求,并保证高可用和高吞吐率。本文将从多个方面详细阐述Kafka并发处理的实现方式。
一、Kafka Producer的并发处理
Kafka Producer是向Kafka写入数据的客户端。在并发场景中,我们需要生产者能够快速发送大量请求,进而提高吞吐量。为了实现这一目标,我们需要使用多线程并发的方式,引入并发包并使用线程池等公共工具类。
import org.apache.kafka.clients.producer.*; import java.util.concurrent.*; public class KafkaProducer { private static final int MSG_COUNT = 10000; private static final String TOPIC = "test-topic"; private static final String BROKER_LIST = "localhost:9092"; private static KafkaProducerproducer; static { Properties configs = initConfig(); producer = new KafkaProducer<>(configs); } private static Properties initConfig() { Properties props = new Properties(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, BROKER_LIST); props.put(ProducerConfig.CLIENT_ID_CONFIG, "KafkaProducerDemo"); props.put(ProducerConfig.ACKS_CONFIG, "all"); props.put(ProducerConfig.RETRIES_CONFIG, 0); props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384); props.put(ProducerConfig.LINGER_MS_CONFIG, 1); props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer"); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer"); return props; } public static void main(String[] args) { ExecutorService executorService = new ThreadPoolExecutor(10,10,0L, TimeUnit.MICROSECONDS,new LinkedBlockingQueue<>()); for(int i=0;i (topic,message),new DemoProduceCallback()); } } public static class DemoProduceCallback implements Callback { @Override public void onCompletion(RecordMetadata metadata, Exception exception) { if(exception == null){ System.out.println(String.format("发送成功:topic:%s,partition:%d,offset:%d",metadata.topic(),metadata.partition(),metadata.offset())); }else { exception.printStackTrace(); } } } }
上述实现方式使用了线程池,使用submit()方法向线程池提交任务,并使用shutdown()方法关闭线程池。每个任务将一个消息发送到指定的topic中,使用DemoProduceCallback类作为回调函数,接收服务端返回的元数据。
二、Kafka Consumer的并发处理
Kafka Consumer是消费者,用于从Kafka读取消息。在并发场景中,我们需要消费者能够快速处理大量请求,进而提高吞吐量。Kafka Consumer实现并发的方式与Producer有所不同,不需要引入线程池,而是使用多个线程并发地消费Kafka消息。
import org.apache.kafka.clients.consumer.*; import org.apache.kafka.common.TopicPartition; import java.util.*; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class KafkaConsumer { private static final int THREAD_COUNT = 3; private static final String TOPIC = "test-topic"; private static final String BROKER_LIST = "localhost:9092"; private static final String GROUP_ID = "test-group"; private static ExecutorService executorService; static { executorService = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors() * THREAD_COUNT); } public static void main(String[] args) { Properties properties = initConfig(); Consumerconsumer = new KafkaConsumer<>(properties); consumer.subscribe(Collections.singletonList(TOPIC)); try{ while (true){ ConsumerRecords records = consumer.poll(100); if(!records.isEmpty()){ ListenableFutureTask task = new ListenableFutureTask<>(new ConsumerTask(records)); executorService.submit(task); } } }finally { consumer.close(); } } public static class ConsumerTask implements Callable { private final ConsumerRecords records; ConsumerTask(ConsumerRecords records) { this.records = records; } @Override public Boolean call() { for (TopicPartition tp : records.partitions()) { List > partitionRecords = records.records(tp); for (ConsumerRecord record : partitionRecords) { System.out.println(String.format("partition:%d,offset:%d,key:%s,value:%s", record.partition(), record.offset(), record.key(), record.value())); } } return Boolean.TRUE; } } private static Properties initConfig() { Properties props = new Properties(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, BROKER_LIST); props.put(ConsumerConfig.GROUP_ID_CONFIG, GROUP_ID); props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true); props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 1000); props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 30000); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); return props; } }
上述实现方式使用了ExecutorService作为线程池,使用submit()方法向线程池提交任务。ConsumerTask类是一个实现Callable接口的消费者任务,每个任务将消费一批消息,并返回一个Boolean值。
三、Kafka在分布式任务中的应用
Kafka的并发处理在分布式任务中尤为重要。Kafka可以将一个分布式任务分成多个子任务,每个子任务独立完成,使用并发方式提高吞吐量。
以下是一个分布式任务的代码示例:
import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; import java.util.UUID; public class KafkaDistributedTaskProducer { public static final String TOPIC_NAME = "distributed-task-topic"; private static final String NAME_SERVER = "localhost:9092"; private static final int PARTITION_COUNT = 3; public static void main(String[] args){ Properties properties = new Properties(); properties.put("bootstrap.servers", NAME_SERVER); properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producerproducer = new KafkaProducer<>(properties); for (int i = 0; i < PARTITION_COUNT; i++) { ProducerRecord record = new ProducerRecord<>(TOPIC_NAME, "id-"+ UUID.randomUUID().toString() , "sub task number "+i); producer.send(record); } producer.close(); } }
上述代码产生了一个分布式任务,将任务拆分为3个子任务,分别将其发送到Kafka中的3个分区。
import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.PartitionInfo; import java.util.Arrays; import java.util.List; import java.util.Properties; public class KafkaDistributedTaskConsumer { public static final String TOPIC_NAME = "distributed-task-topic"; private static final String NAME_SERVER = "localhost:9092"; public static void main(String[] args){ Properties properties = new Properties(); properties.put("bootstrap.servers", NAME_SERVER); properties.put("group.id", "distributed-task-consumer"); properties.put("auto.offset.reset", "earliest"); properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumerconsumer = new KafkaConsumer<>(properties); List partitions = consumer.partitionsFor(TOPIC_NAME); int partitionCount = partitions.size(); for(int i = 0; i < partitionCount; i++){ new Thread(() -> { consumer.subscribe(Arrays.asList(TOPIC_NAME)); consumer.seekToBeginning(Arrays.asList(new org.apache.kafka.common.TopicPartition(TOPIC_NAME, i))); while(true){ ConsumerRecords records = consumer.poll(100); if(records != null && !records.isEmpty()){ records.forEach(record -> { System.out.println(String.format("线程ID:%s,分区:%d,偏移量:%d,键值:%s,消息值:%s", Thread.currentThread().getId(), record.partition(), record.offset(), record.key(), record.value())); }); } } }).start(); } } }
上述代码是对分布式任务的消费端的实现,为了提高处理速度,使用了多线程并发的方式,分别监听Kafka的3个分区,可以看到,每个线程消费一个分区,从而实现分布式任务的并发处理。
结尾
本文从Producer、Consumer和分布式任务等多个方面详细阐述了Kafka并发处理的实现方式,Kafka在并发场景中极具优势,能够轻易实现高并发高吞吐的数据流处理。