本文目录一览:
java编个中文分词的程序
import java.io.Reader;
import java.io.StringReader;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.cjk.CJKAnalyzer;
import org.apache.lucene.analysis.cn.ChineseAnalyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.mira.lucene.analysis.MIK_CAnalyzer;
public class JeAnalyzer {
public static void testStandard(String testString) {
try {
Analyzer analyzer = new StandardAnalyzer();
Reader r = new StringReader(testString);
StopFilter sf = (StopFilter) analyzer.tokenStream("", r);
System.err.println("=====standard analyzer====");
Token t;
while ((t = sf.next()) != null) {
System.out.println(t.termText());
}
} catch (Exception e) {
e.printStackTrace();
}
}
public static void testCJK(String testString) {
try {
Analyzer analyzer = new CJKAnalyzer();
Reader r = new StringReader(testString);
StopFilter sf = (StopFilter) analyzer.tokenStream("", r);
System.err.println("=====cjk analyzer====");
Token t;
while ((t = sf.next()) != null) {
System.out.println(t.termText());
}
} catch (Exception e) {
e.printStackTrace();
}
}
public static void testChiniese(String testString) {
try {
Analyzer analyzer = new ChineseAnalyzer();
Reader r = new StringReader(testString);
TokenFilter tf = (TokenFilter) analyzer.tokenStream("", r);
System.err.println("=====chinese analyzer====");
Token t;
while ((t = tf.next()) != null) {
System.out.println(t.termText());
}
} catch (Exception e) {
e.printStackTrace();
}
}
public static String transJe(String testString, String c1, String c2) {
String result = "";
try {
Analyzer analyzer = new MIK_CAnalyzer();
Reader r = new StringReader(testString);
TokenStream ts = (TokenStream) analyzer.tokenStream("", r);
Token t;
while ((t = ts.next()) != null) {
result += t.termText() + ",";
}
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
public static void main(String[] args) {
try {
String testString = "中文分词的方法其实不局限于中文应用,也被应用到英文处理,如手写识别,单词之间的空格就很清楚,中文分词方法可以帮助判别英文单词的边界";
System.out.println("测试的语句 "+testString);
String sResult[] = transJe(testString, "gb2312", "utf-8").split(",");
for (int i = 0; i sResult.length; i++) {
System.out.println(sResult[i]);
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
jar包
lucene-analyzers-2.4.1.jar
lucene-core-2.4.1.jar
IKAnalyzer2.0.2OBF.jar
java中文分词组件word怎么使用
参考如下
1、快速体验
运行项目根目录下的脚本demo-word.bat可以快速体验分词效果
用法: command [text] [input] [output]
命令command的可选值为:demo、text、file
demo
text 杨尚川是APDPlat应用级产品开发平台的作者
file d:/text.txt d:/word.txt
exit
2、对文本进行分词
移除停用词:ListWord words = WordSegmenter.seg("杨尚川是APDPlat应用级产品开发平台的作者");
保留停用词:ListWord words = WordSegmenter.segWithStopWords("杨尚川是APDPlat应用级产品开发平台的作者");
System.out.println(words);
输出:
移除停用词:[杨尚川, apdplat, 应用级, 产品, 开发平台, 作者]
保留停用词:[杨尚川, 是, apdplat, 应用级, 产品, 开发平台, 的, 作者]
3、对文件进行分词
String input = "d:/text.txt";
String output = "d:/word.txt";
移除停用词:WordSegmenter.seg(new File(input), new File(output));
保留停用词:WordSegmenter.segWithStopWords(new File(input), new File(output));
4、自定义配置文件
默认配置文件为类路径下的word.conf,打包在word-x.x.jar中
自定义配置文件为类路径下的word.local.conf,需要用户自己提供
如果自定义配置和默认配置相同,自定义配置会覆盖默认配置
配置文件编码为UTF-8
5、自定义用户词库
自定义用户词库为一个或多个文件夹或文件,可以使用绝对路径或相对路径
用户词库由多个词典文件组成,文件编码为UTF-8
词典文件的格式为文本文件,一行代表一个词
可以通过系统属性或配置文件的方式来指定路径,多个路径之间用逗号分隔开
类路径下的词典文件,需要在相对路径前加入前缀classpath:
指定方式有三种:
指定方式一,编程指定(高优先级):
WordConfTools.set("dic.path", "classpath:dic.txt,d:/custom_dic");
DictionaryFactory.reload();//更改词典路径之后,重新加载词典
指定方式二,Java虚拟机启动参数(中优先级):
java -Ddic.path=classpath:dic.txt,d:/custom_dic
指定方式三,配置文件指定(低优先级):
使用类路径下的文件word.local.conf来指定配置信息
dic.path=classpath:dic.txt,d:/custom_dic
如未指定,则默认使用类路径下的dic.txt词典文件
6、自定义停用词词库
使用方式和自定义用户词库类似,配置项为:
stopwords.path=classpath:stopwords.txt,d:/custom_stopwords_dic
7、自动检测词库变化
可以自动检测自定义用户词库和自定义停用词词库的变化
包含类路径下的文件和文件夹、非类路径下的绝对路径和相对路径
如:
classpath:dic.txt,classpath:custom_dic_dir,
d:/dic_more.txt,d:/DIC_DIR,D:/DIC2_DIR,my_dic_dir,my_dic_file.txt
classpath:stopwords.txt,classpath:custom_stopwords_dic_dir,
d:/stopwords_more.txt,d:/STOPWORDS_DIR,d:/STOPWORDS2_DIR,stopwords_dir,remove.txt
8、显式指定分词算法
对文本进行分词时,可显式指定特定的分词算法,如:
WordSegmenter.seg("APDPlat应用级产品开发平台", SegmentationAlgorithm.BidirectionalMaximumMatching);
SegmentationAlgorithm的可选类型为:
正向最大匹配算法:MaximumMatching
逆向最大匹配算法:ReverseMaximumMatching
正向最小匹配算法:MinimumMatching
逆向最小匹配算法:ReverseMinimumMatching
双向最大匹配算法:BidirectionalMaximumMatching
双向最小匹配算法:BidirectionalMinimumMatching
双向最大最小匹配算法:BidirectionalMaximumMinimumMatching
全切分算法:FullSegmentation
最少分词算法:MinimalWordCount
最大Ngram分值算法:MaxNgramScore
9、分词效果评估
运行项目根目录下的脚本evaluation.bat可以对分词效果进行评估
评估采用的测试文本有253 3709行,共2837 4490个字符
评估结果位于target/evaluation目录下:
corpus-text.txt为分好词的人工标注文本,词之间以空格分隔
test-text.txt为测试文本,是把corpus-text.txt以标点符号分隔为多行的结果
standard-text.txt为测试文本对应的人工标注文本,作为分词是否正确的标准
result-text-***.txt,***为各种分词算法名称,这是word分词结果
perfect-result-***.txt,***为各种分词算法名称,这是分词结果和人工标注标准完全一致的文本
wrong-result-***.txt,***为各种分词算法名称,这是分词结果和人工标注标准不一致的文本
java word分词器怎样安装在java中
word分词是一个Java实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用ngram模型来消除歧义。
如果需要安装word分词器可以参考下面的步骤:
1、确保电脑上已经安装了JDK软件和Eclispe工具,没有安装的可以到对应的官网下载安装:
JDK官网:
Eclipse官网:
2、下载word分词器的相关jar包:
打开word分词器的官方github主页:
下拉找到ReadME部分,点击“编译好的jar下载”:
页面将会跳转到到百度云盘的下载页面,按照需求下载指定的版本即可。
注意:word1.3需要JDK1.8。
下载完成之后解压到指定目录。
3、创建Java项目,导入word分词器的相关jar包:
打开Eclipse,右键创建Java project项目:
然后右键项目选择Build path打开导入页面,导入刚才下载的jar包到项目中:
导入成功之后就可以在自己的项目中使用word分词器了。
java语言中文分词程序怎么编写分词程序正
现可以提供两种思路:
1.String或是StringBuffer(建议用) 中的indexOf("中华")方法,查找给定的的字符串中是否有给定词表中的词。
2.借鉴编译原理中的状态装换的思想。
先编写一个状态机,用于测试给定字符串中的词是否满足词表中的内容。
写在最后:1)建议使用第一种方法,因为在java 内部实现的查找操作其实 和你想得思路是相同的,不过他的效率会高些。
2)如果个人的编程能力比较强或是不考虑效率只是想实现专有的分词算法。可以使用第二种方法。
3)以上的两种方法都可以使用多线程来提高程序的效率。