本文目录一览:
- 1、如何用Python做情感分析
- 2、用SVM怎么解决中文微博情感的分析问题
- 3、用python找文献,并从文本中分析情绪,做一个数据分析
- 4、如何利用 Python 实现 SVM 模型
- 5、R语言中的情感分析与机器学习
- 6、怎样用python实现SVM分类器,用于情感分析的二分类
如何用Python做情感分析
可以使用snownlp包,也可以用nltk 和 scikit-learn 结合,或者自己写算法实现。
简单话就是情感词典的匹配,想提高效果的需要考虑特征之间的搭配,语法顺序等,可以查询搜索相关的入门例子和算法详细了解。
用SVM怎么解决中文微博情感的分析问题
sentiment analyze 可以看成是一个多分类问题
对于中文文档,用word2vec等工具提取出文本特征,然后直接用多分类向量机进行训练~
用python找文献,并从文本中分析情绪,做一个数据分析
到你的系统“终端”(macOS, Linux)或者“命令提示符”(Windows)下,进入我们的工作目录demo,执行以下命令。
pip install snownlppip install -U textblobpython -m textblob.download_corpora
好了,至此你的情感分析运行环境已经配置完毕。
在终端或者命令提示符下键入:
jupyter notebook
你会看到目录里之前的那些文件,忽略他们就好。
如何利用 Python 实现 SVM 模型
我先直观地阐述我对SVM的理解,这其中不会涉及数学公式,然后给出Python代码。
SVM是一种二分类模型,处理的数据可以分为三类:
线性可分,通过硬间隔最大化,学习线性分类器
近似线性可分,通过软间隔最大化,学习线性分类器
线性不可分,通过核函数以及软间隔最大化,学习非线性分类器
线性分类器,在平面上对应直线;非线性分类器,在平面上对应曲线。
硬间隔对应于线性可分数据集,可以将所有样本正确分类,也正因为如此,受噪声样本影响很大,不推荐。
软间隔对应于通常情况下的数据集(近似线性可分或线性不可分),允许一些超平面附近的样本被错误分类,从而提升了泛化性能。
如下图:
实线是由硬间隔最大化得到的,预测能力显然不及由软间隔最大化得到的虚线。
对于线性不可分的数据集,如下图:
我们直观上觉得这时线性分类器,也就是直线,不能很好的分开红点和蓝点。
但是可以用一个介于红点与蓝点之间的类似圆的曲线将二者分开,如下图:
我们假设这个黄色的曲线就是圆,不妨设其方程为x^2+y^2=1,那么核函数是干什么的呢?
我们将x^2映射为X,y^2映射为Y,那么超平面变成了X+Y=1。
那么原空间的线性不可分问题,就变成了新空间的(近似)线性可分问题。
此时就可以运用处理(近似)线性可分问题的方法去解决线性不可分数据集的分类问题。
---------------------------------------------------------------------------------------------------------------------------
以上我用最简单的语言粗略地解释了SVM,没有用到任何数学知识。但是没有数学,就体会不到SVM的精髓。因此接下来我会用尽量简洁的语言叙述SVM的数学思想,如果没有看过SVM推导过程的朋友完全可以跳过下面这段。
对于求解(近似)线性可分问题:
由最大间隔法,得到凸二次规划问题,这类问题是有最优解的(理论上可以直接调用二次规划计算包,得出最优解)
我们得到以上凸优化问题的对偶问题,一是因为对偶问题更容易求解,二是引入核函数,推广到非线性问题。
求解对偶问题得到原始问题的解,进而确定分离超平面和分类决策函数。由于对偶问题里目标函数和分类决策函数只涉及实例与实例之间的内积,即xi,xj。我们引入核函数的概念。
拓展到求解线性不可分问题:
如之前的例子,对于线性不可分的数据集的任意两个实例:xi,xj。当我们取某个特定映射f之后,f(xi)与f(xj)在高维空间中线性可分,运用上述的求解(近似)线性可分问题的方法,我们看到目标函数和分类决策函数只涉及内积f(xi),f(xj)。由于高维空间中的内积计算非常复杂,我们可以引入核函数K(xi,xj)=f(xi),f(xj),因此内积问题变成了求函数值问题。最有趣的是,我们根本不需要知道映射f。精彩!
我不准备在这里放推导过程,因为已经有很多非常好的学习资料,如果有兴趣,可以看:CS229 Lecture notes
最后就是SMO算法求解SVM问题,有兴趣的话直接看作者论文:Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines
我直接给出代码:SMO+SVM
在线性可分数据集上运行结果:
图中标出了支持向量这个非常完美,支持向量都在超平面附近。
在线性不可分数据集上运行结果(200个样本):
核函数用了高斯核,取了不同的sigma
sigma=1,有189个支持向量,相当于用整个数据集进行分类。
sigma=10,有20个支持向量,边界曲线能较好的拟合数据集特点。
我们可以看到,当支持向量太少,可能会得到很差的决策边界。如果支持向量太多,就相当于每次都利用整个数据集进行分类,类似KNN。
R语言中的情感分析与机器学习
来源 | 雪晴数据网
利用机器学习可以很方便的做情感分析。本篇文章将介绍在R语言中如何利用机器学习方法来做情感分析。在R语言中,由Timothy P.Jurka开发的情感分析以及更一般的文本挖掘包已经得到了很好的发展。你可以查看下sentiment包以及梦幻般的RTextTools包。实际上,Timothy还写了一个针对低内存下多元Logistic回归(也称最大熵)的R包maxtent。
然而,RTextTools包中不包含朴素贝叶斯方法。e1071包可以很好的执行朴素贝叶斯方法。e1071是TU Wien(维也纳科技大学)统计系的一门课程。这个包的主要开发者是David Meyer。
我们仍然有必要了解文本分析方面的知识。用R语言来处理文本分析已经是公认的事实(详见R语言中的自然语言处理)。tm包算是其中成功的一部分:它是R语言在文本挖掘应用中的一个框架。它在文本清洗(词干提取,删除停用词等)以及将文本转换为词条-文档矩阵(dtm)方面做得很好。这里是对它的一个介绍。文本分析最重要的部分就是得到每个文档的特征向量,其中词语特征最重要的。当然,你也可以将单个词语特征扩展为双词组,三连词,n-连词等。在本篇文章,我们以单个词语特征为例做演示。
注意,在R中用ngram包来处理n-连词。在过去,Rweka包提供了函数来处理它,感兴趣的可以查看这个案例。现在,你可以设置RTextTools包中create_matrix函数的参数ngramLength来实现它。
第一步是读取数据:
创建词条-文档矩阵:
现在,我们可以用这个数据集来训练朴素贝叶斯模型。注意,e1071要求响应变量是数值型或因子型的。我们用下面的方法将字符串型数据转换成因子型:
测试结果准确度:
显然,这个结果跟python得到的结果是相同的(这篇文章是用python得到的结果)。
其它机器学习方法怎样呢?
下面我们使用RTextTools包来处理它。
首先,指定相应的数据:
其次,用多种机器学习算法训练模型:
现在,我们可以使用训练过的模型做测试集分类:
准确性如何呢?
得到模型的结果摘要(特别是结果的有效性):
结果的交叉验证:
结果可在我的Rpub页面找到。可以看到,maxent的准确性跟朴素贝叶斯是一样的,其它方法的结果准确性更差。这是可以理解的,因为我们给的是一个非常小的数据集。扩大训练集后,利用更复杂的方法我们对推文做的情感分析可以得到一个更好的结果。示例演示如下:
推文情感分析
数据来自victornep。victorneo展示的是用python对推文做情感分析。这里,我们用R来处理它:
读取数据:
首先,尝试下朴素贝叶斯
然后,尝试其他方法:
这里,我们也希望得到正式的测试结果。包括:
1.analytics@algorithm_summary:包括精确度,召回率,准确率,F-scores的摘要
2.analytics@label_summary:类标签摘要
3.analytics@document_summary:所有数据和得分的原摘要
4.analytics@ensemble_summary:所有 精确度/覆盖度 比值的摘要
现在让我们看看结果:
与朴素贝叶斯方法相比,其它算法的结果更好,召回精度高于0.95。结果可在Rpub查看
原文链接:http://
怎样用python实现SVM分类器,用于情感分析的二分类
这句话应该不是说你feature太多了,而是说for循环中,使用了两个变量去unpack featuresets太多了。所以应该是你的数据结构有问题,featuresets可能不是适合两个变量来解包的数据结构,或者中文编码有问题。