您的位置:

用於交易策略的python的简单介绍

本文目录一览:

使用python做量化交易策略测试和回验,有哪些比较成熟一些的库

可以尝试一下JoinQuant: 聚宽,人人皆为宽客

详细的API文档:API文档 - JoinQuant

免费提供IPython Notebook研究平台,提供分钟级数据,采用Docker技术隔离,资源独立、安全性更高、性能更好,同步支持Python2、Python3。

免费提供沪深A股、ETF的历史交易数据,支持基于日级、分钟级的精准回测。

免费提供最准确、实时的沪深A股、ETF模拟交易工具,支持基于tick级的模拟交易。

为量化爱好者提供线上交流社区,支持一键克隆策略,便于用户交流量化策略、学习量化知识,一起成长。

基于2005年至今完整的Level-2数据,上市公司财务数据,包含完整的停复牌、复权、退市等信息,盘后及时更新。

Python五大应用领域是什么?

【导读】伴随着国家战略对“新基建”施行提上日程,大数据将会得到进一步推行和运用。那么,作为大数据开发言语之一的Python言语,在哪些领域有重要运用呢?今天就跟随小编一起来了解下吧!

一、网络爬虫

网络爬虫是Python比较常用的一个场景,国际上,google在前期大量地运用Python言语作为网络爬虫的根底,带动了整个Python言语的运用发展。

二、数据处理

Python有很齐备的生态环境。"大数据"分析中涉及到的分布式核算、数据可视化、数据库操作等,Python中都有成熟的模块能够挑选完结其功能。关于Hadoop-MapReduce和Spark,都能够直接运用Python完结核算逻辑,这不管关于数据科学家仍是关于数据工程师而言都是十分便当的。

三、web开发

Python的诞生前史比Web还要早,由于Python是一种解说型的脚本言语,开发效率高,所以十分适合用来做Web开发。

Django 是 Python 编程言语驱动的一个开源模型-视图-控制器(MVC)风格的 Web 运用程序结构。运用

Django,咱们在几分钟之内就能够创建高品质、易维护、数据库驱动的运用程序。

四、数据分析

关于数据分析师来说,不只要自己理解数据背面的含义,而且还要给更直地展现数据的含义。

Scipy是一组专门解决科学核算中各种规范问题域的包的集合。Numpy是python科学核算的根底包。Pandas处理上千万的数据是一挥而就的工作,同时随后咱们也将看到它比SQL有更强的表达能力,能够做很多复杂的操作,要写的code也更少。

五、人工智能

人工智能是现在十分火的一个方向,AI热潮让Python言语的未来充满了无限的潜力。现在释放出来的几个十分有影响力的AI结构,大多是Python的实现,为什么呢?

在人工智能大领域领域内的数据发掘、机器学习、神经网络、深度学习等方面都是主流的编程言语,得到广泛的支持和运用。人工智能的核心算法大部分仍是依赖于C/C++的,由于是核算密集型,需求十分精细的优化,还需求GPU、专用硬件之类的接口,这些都只要C/C++能做到。

关于Python五大应用领域是什么,小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。

python开发EA外汇交易怎么开发

1.首先,你要有一个EA,必须要有以ex4为扩展名的,如果只有mq4文件的话,就要用MetaTrader自带的编辑器MetaEditor打开,将mq4通过编译(compile)并且要不出现错误,才能在原存放mq4的文件夹下面得到一个同名的ex4文件。

2.将这个ex4文件复制到MetaTrader 4所在的文件夹下面的experts文件夹下,比如:D:\Program Files\ACTC MetaTrader 4\experts,关闭并重新打开MetaTrader 4。

3.在“导航”下面的“智能交易系统”下面右键点击你想要使用的EA。

拓展资料:

1、 对于想要在 mt5+python 发展 ea 的交易者,最大会立即遇到的困难是,mt5 现在还没有提供 python 可以调用 mt5 backtest 的接口,也就是在 python 上开发 ea 是无法在 mt5 上作复盘测试的,只能另外再找 python 的第三方 backtest 库再多写接口来达成。 复盘不是只有验证策略的有效性,也扮演调试策略参数的重要工作,所以复盘对于开发 ea 是相当重要的环节。

2、另外在执行速度上,mt5+python ea 的速度自然是无法和纯在 mt5 开发的 ea 相比,这个是实际执行压力测试后得到的结论。因为 mt5+python ea 在调用当前价格和 K 线数据作为信号计算,和调用交易记录,需要透过 mt5 python 官方库与 mt5 建立在本地的一个加密的 socket 连接来作,读写速度自然是比不过 mt5 ea 直接从 mt5 内存读取行情数据和订单信息。虽然 python 是脚本编程语言,与其他编译型的编程语言程序比自然是不快,但是对于 ea 的应用,这样的慢是不太感受的到,可以直接感受到与相同 mt5 ea 的慢,主要是慢在与 mt5 间的大量数据传送和 io 读写差异上,尤其是连续调用行情数据比较多时,这样的速度差异就相当明显了。

3、这还是有优化方式的,可以仿 mql5 指标对于初始和后续的行情读取,采取精简量的读取方式。 既然有这些缺点,在 mt5 开发 python ea 还是在有些领域有不可替代的优点,所以 metaquotes 才会在 2020 年最终还是把 python 接口和函数库提供出来。因为现在许多衍生性交易平台都已经具备了 python api,而经过这些年,python 已经成为量化交易程序最有人气的编程语言,这也让许多交易团队在建构量化交易的环境,会优先考虑 python。 另外在人工智能的量化交易,python 的机器学习和统计数组处理的第三方库大概是最丰富的编程语言。对于交易策略里有用到 tensorflow 这类机器学习库,使用 python 来开发自动交易程序是最佳的选择。 mt5 或是 mt4 ea 受限于当时 metaquotes 自定的限制,只能作单线程运行,当同时触发事件函数如 OnTimer OnTick OnChartEvent,mt5 底层会作互斥锁限制一个线程运行。

操作环境: 浏览器 电脑端:macbookpro mos14打开goole版本 92.0.4515.131

中国的 Python 量化交易工具链有哪些

万得的Python API,可以用来获取实时数据、历史数据以及下单交易 优点:万得大而全 缺点:下单交易功能不是事件驱动(例如成交回报需要用户去查询,而不是主推)

同花顺iFinD的Python API,类似万得的API 优点:比万得便宜,同花顺的服务态度很好(用户提出新需求后很快就能给出确定的答复或者解决方案)

掘金的量化平台

通联数据的量化平台

QuickFix的Python API(可以用来接国信、方正的FIX接口)

Numpy/Scipy/Matplotlib/Pandas(量化分析)

IPyhon/Spyder(适合做量化分析的IDE环境)

Zipline(策略开发回测)

TuShare财经数据接口 - 可以直接抓取新浪财经、凤凰财经的网站数据,包括行情、基本面、经济数据等等。完全免费,简洁易用,API设计得非常友好,提取的数据格式是Pandas的DataFrame。同时可以获取非高频实时数据(取决于网站更新速度,同事经验大约是15秒),一个极好的非高频股票策略数据解决方案。

恒生电子的量化赢家平台,提供Python接口,链接我点进去后没看到具体的使用教程,希望回头补一下。

米矿ricequant在我提出这个问题时尚只有Java的API,后来也支持了Python,期待2016有新的突破。

python主要用来干什么?

python主要用来编辑脚本。

Python的用途真的很多很多,如果你自制力强,有上进心,想通过学习来改变现状,那么学习Python可以让你点亮高薪人生。

有对Python感兴趣的同学就赶快学习起来吧,既然选择要学python编程学Python可以做..Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。Python的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符。

Python由荷兰数学和计算机科学研究学会的Guido van Rossum于1990年代初设计,作为一门叫做ABC语言的替代品。

Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。

怎么学习python量化交易?

下面教你八步写个量化交易策略——单股票均线策略

1 确定策略内容与框架

若昨日收盘价高出过去20日平均价今天开盘买入股票

若昨日收盘价低于过去20日平均价今天开盘卖出股票

只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?

想想人是怎么操作的,应该包括这样两个部分

既然是单股票策略,事先决定好交易哪一个股票。

每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去。

对应代码也是这两个部分

def initialize(context):

    用来写最开始要做什么的地方

def handle_data(context,data):

    用来写每天循环要做什么的地方

2 初始化

我们要写设置要交易的股票的代码,比如 兔宝宝(002043)

def initialize(context):

    g.security = '002043.XSHE'# 存入兔宝宝的股票代码

3 获取收盘价与均价

首先,获取昨日股票的收盘价

# 用法:变量 = data[股票代码].close

last_price = data[g.security].close# 取得最近日收盘价,命名为last_price

然后,获取近二十日股票收盘价的平均价

# 用法:变量 = data[股票代码].mavg(天数,‘close’)

# 获取近二十日股票收盘价的平均价,命名为average_price

average_price = data[g.security].mavg(20, 'close')

4 判断是否买卖

数据都获取完,该做买卖判断了

# 如果昨日收盘价高出二十日平均价, 则买入,否则卖出

if last_price  average_price:

    买入

elif last_price  average_price:

    卖出

问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。

# 用法:变量 = context.portfolio.cash

cash = context.portfolio.cash# 取得当前的现金量,命名为cash

5 买入卖出

# 用法:order_value(要买入股票股票的股票代码,要多少钱去买)

order_value(g.security, cash)# 用当前所有资金买入股票

# 用法:order_target(要买卖股票的股票代码,目标持仓金额)

order_target(g.security, 0)# 将股票仓位调整到0,即全卖出

6 策略代码写完,进行回测

把买入卖出的代码写好,策略就写完了,如下

def initialize(context):#初始化

    g.security = '002043.XSHE'# 股票名:兔宝宝

def handle_data(context, data):#每日循环

    last_price = data[g.security].close# 取得最近日收盘价

# 取得过去二十天的平均价格

    average_price = data[g.security].mavg(20, 'close')

    cash = context.portfolio.cash# 取得当前的现金

# 如果昨日收盘价高出二十日平均价, 则买入,否则卖出。

if last_price  average_price:

        order_value(g.security, cash)# 用当前所有资金买入股票

elif last_price  average_price:

        order_target(g.security, 0)# 将股票仓位调整到0,即全卖出

现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。

7 建立模拟交易,使策略和行情实时连接自动运行

策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。 写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。

8 开启微信通知,接收交易信号

点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。 点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。