您的位置:

从多个方面详细阐述pre-training

一、pre-training fine-tuning

Pre-training fine-tuning是指在预训练模型的基础上通过微调的方式来完成具体任务。以自然语言处理任务为例,在大规模文本数据上训练好的语言模型可以通过fine-tuning的方式来适应具体任务,从而提高任务的准确率。Fine-tuning的过程中,只需要在预训练模型的末尾添加一个适合具体任务的头部,然后通过少量的数据来进行训练。

import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
model = transformers.AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")

# 构建头部
head = transformers.AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)

# 合并模型
model.bert = transformers.modeling_bert.BertForPreTraining.from_pretrained("bert-base-uncased")
model.cls = head.classifier

# fine-tuning
model.train()

for epoch in range(num_epochs):
    for batch in data:
        inputs, labels = tokenize(batch)
        loss = model(inputs, labels)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

二、pretraining model PTM

Pre-training model PTM(Pre-trained Model)是指一种基于语言模型的预训练方法,即先用大量的未标注数据训练一个语言模型,再将该语言模型用于新任务。PTM一般采用自监督学习方法预训练模型。以BERT为例,它通过遮盖语言模型(Masked Language Model,MLM)和下一句预测(Next Sentence Prediction,NSP)两种自监督学习任务对语言模型进行训练。PTM可以显著提高模型在特定任务上的表现。

import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
model = transformers.AutoModelForMaskedLM.from_pretrained("bert-base-uncased")

# 训练模型
model.train()

for epoch in range(num_epochs):
    for batch in data:
        inputs, labels = tokenize(batch, mask=True)
        loss = model(inputs, labels)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

三、pretraining test原文听力

Pre-training test原文听力是指在预测任务中使用原始文本或音频作为输入,模型需要输出正确的文本或音频。原文听力作为一种常见的自然语言处理任务,在学习语言和语音方面都有着重要的作用。在pre-training过程中,模型需要对输入进行编码来提取特征,从而更好地理解输入数据。

import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
model = transformers.AutoModelForSpeechRecognition.from_pretrained("facebook/wav2vec2-base-960h")

# 预测
inputs = tokenizer(text, return_tensors="pt").input_values
outputs = model(inputs)
predicted_transcription = tokenizer.batch_decode(outputs, skip_special_tokens=True)

四、pretraining test答案

Pre-training test答案是指在预测任务中使用一些问题的答案作为输入,模型需要输出正确的问题。该任务常用于问答系统中。在pre-training过程中,模型需要学会从输入中提取相关信息,从而作出正确预测。

import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
model = transformers.AutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")

# 预测
inputs = tokenizer(question, text, return_tensors="pt")
start_scores, end_scores = model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
start_index = torch.argmax(start_scores)
end_index = torch.argmax(end_scores)
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][start_index:end_index+1]))

五、pretraining model electra

Pre-training model ELECTRA(Efficiently Learning an Encoder that Classifies Token Replacements Accurately)是一种新型的预训练模型,其主要创新点是提出了替换观察者和生成网络,通过这种方法,模型可以利用所有语料库的信息进行训练,同时避免了MLM所带来的信息遮掩问题。ELECTRA在各种自然语言处理任务中都取得了很好的效果。

import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained("google/electra-large-discriminator")
model = transformers.AutoModelForSequenceClassification.from_pretrained("google/electra-large-discriminator")

# 预测
input_ids = tokenizer.encode(text, return_tensors='pt')[0]
outputs = model(input_ids)
predictions = torch.softmax(outputs[0], dim=-1)

# 输出结果
print('Positive:', predictions[0][1].item())
print('Negative:', predictions[0][0].item())

六、pretraining怎么读

Pre-training读作“预训练”,其中pre表示“预先、预先的”,training表示“训练”。因此,pre-training指的是在一个任务之前训练一个模型的整个过程。

七、pretraining task for GL

Pre-training task for GL(General Language Understanding Evaluation,通用语言理解评测)是一个用来评估自然语言处理能力的基准测试,它曾经是NLP领域最具影响力的评测之一。在pre-training过程中,选择合适的任务来训练模型,使模型更好地理解自然语言,从而在GLUE上取得更好的表现。

import transformers
from transformers import glue_convert_examples_to_features, GlueDataset
from transformers import TrainingArguments, Trainer

tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
model = transformers.AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")

# 选择任务,如MNLI
data = GlueDataset("MNLI", tokenizer=tokenizer)

# 转换数据集
train_dataset = glue_convert_examples_to_features(data["train"], tokenizer, max_length=128, task="mnli")

# 定义训练参数
training_args = TrainingArguments(
    output_dir='./results',        
    num_train_epochs=3,             
    per_device_train_batch_size=16, 
    per_device_eval_batch_size=32,  
    warmup_steps=500,               
    weight_decay=0.01,              
    logging_dir='./logs',           
    logging_steps=10,
)

# 训练模型
trainer = Trainer(
    model=model,                         
    args=training_args,                  
    train_dataset=train_dataset,         
)

trainer.train()

八、pretraining model

Pre-training model是指在大规模语料库上训练的模型,以便在下游任务中提高性能。这些模型通常基于神经网络结构,采用自监督学习的方法进行训练。常用的pre-training model包括BERT、GPT、RoBERTa等。

import transformers

# 加载BERT模型
tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
model = transformers.AutoModel.from_pretrained("bert-base-uncased")

# 预测
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
hidden_states = outputs.last_hidden_state

九、pretraining task

Pre-training task是指在pre-training过程中用来训练模型的具体任务,常用的pre-training task包括MLM、NSP等。通过预测被遮盖的词语和下一句话的关系等任务,模型可以从未标注的数据中学习到更好的特征表示。

import transformers

# 加载BERT模型
tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
model = transformers.AutoModel.from_pretrained("bert-base-uncased")

# 使用NSP任务进行pre-training
model = transformers.BertForNextSentencePrediction.from_pretrained("bert-base-uncased")