一、安装和环境配置
1、安装PyTorch
conda install pytorch torchvision torchaudio -c pytorch
2、验证是否安装成功
import torch
print(torch.__version__)
3、安装CUDA
conda install cudatoolkit
4、创建环境
conda create --name torch-env
conda activate torch-env
5、将新环境添加到Jupyter Notebook
python -m ipykernel install --user --name torch-env --display-name "Python (torch-env)"
二、数据处理
1、加载数据集
from torchvision import datasets, transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform)
2、数据加载器
from torch.utils.data import DataLoader
train_batch_size = 64
test_batch_size = 1000
train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)
3、数据可视化
import matplotlib.pyplot as plt
images, labels = next(iter(train_loader))
fig = plt.figure(figsize=(10, 10))
for i in range(64):
ax = fig.add_subplot(8, 8, i+1, xticks=[], yticks=[])
ax.imshow(images[i].view(28, 28))
ax.set_title(str(labels[i].item()))
plt.show()
三、模型训练
1、定义模型
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
net = Net()
2、定义损失函数和优化器
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
3、训练模型
for epoch in range(3):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
四、模型评估
1、测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
2、查看每个类别的准确率
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(test_batch_size):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
i, 100 * class_correct[i] / class_total[i]))
五、模型保存和加载
1、保存模型
PATH = './mnist_net.pth'
torch.save(net.state_dict(), PATH)
2、加载模型
net = Net()
net.load_state_dict(torch.load(PATH))
以上就是Linux PyTorch的基本使用方法,包括了安装和环境配置、数据处理、模型训练、模型评估、模型保存和加载等方面。通过这篇文章,你可以初步掌握Linux PyTorch的使用方法,为进行更加复杂的深度学习实验打下基础。