本文目录一览:
- 1、用python生成随机数的几种方法
- 2、如何用python的蒙特卡洛模拟生成新的数据
- 3、python基础2:随机数生成—random模块、numpy中的random函数
- 4、如何用python模拟生成数据或日志
- 5、求助用python从数据库取数据动态生成表格的方法
用python生成随机数的几种方法
1 从给定参数的正态分布中生成随机数
当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:
import numpy as np# 定义从正态分布中获取随机数的函数def get_normal_random_number(loc, scale): """ :param loc: 正态分布的均值 :param scale: 正态分布的标准差 :return:从正态分布中产生的随机数 """ # 正态分布中的随机数生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_normal_random_number(loc=2, scale=2) # 打印结果 print(n) # 结果:3.275192443463058
2 从给定参数的均匀分布中获取随机数的函数
考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。
import numpy as np# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_uniform_random_number(low=2, high=4) # 打印结果 print(n) # 结果:2.4462417140153114
3 按照指定概率生成随机数
有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。
3.1 按照指定概率从数字列表中随机抽取数字
假设给定一个数字列表和一个与之对应的概率列表,两个列表对应位置的元素组成的元组即表示该数字在数字列表中以多大的概率出现,那么如何根据这些已知条件从数字列表中按概率抽取随机数呢?在这里我们考虑用均匀分布来模拟概率,代码如下:
import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 返回值 return number# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:1
3.2 按照指定概率从区间列表中的某个区间内生成随机数
给定一个区间列表和一个与之对应的概率列表,两个列表相应位置的元素组成的元组即表示某数字出现在某区间内的概率是多少,已知这些,我们如何生成随机数呢?这里我们通过两次使用均匀分布达到目的,代码如下:
import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 从区间[number. number - 1]上随机抽取一个值 num = get_uniform_random_number(number, number - 1) # 返回值 return num# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:3.49683787011193
如何用python的蒙特卡洛模拟生成新的数据
生成1~10的随机数1000个:
import random
fp = open("test", 'w');
for i in range(1, 1000):
a = random.randint(1,10)
fp.write(str(a)+"\n");
fp.close();
注意:写入文件的不会在最后写入,而是重新写文件。
python基础2:随机数生成—random模块、numpy中的random函数
在Python中可以用于随机数生成的有两种主要途径,一是random模块,另一个是numpy库中random函数。
在我们日常使用中,如果是为了得到随机的单个数,多考虑random模块;如果是为了得到随机小数或者整数的矩阵,就多考虑numpy中的random函数,当然numpy也可以的到随机的单个数
一、random模块
二、numpy库中random函数
random模块中将近有7个函数都是可以用来生成随机数的:
作用:随机生成一个 [0,1) 的浮点数
作用:随机生成一个 [a,b) 的浮点数
作用:随机生成一个 [a,b] 的整数
作用:从列表,元组,字符串、集合(可用于for循环的数据类型)中随机选择一个元素
作用:在生成的以a为始,每step递增,以b为终这样的一个整数序列中随机选择一个数
作用:打乱一个列表的元素顺序
从序列population中随机取出k个数;population的类型可以是列表、元组、集合、字符串;
在Numpy库中,常用使用np.random.rand()、np.random.randn()和np.random.randint()随机函数。
作用:返回一个或一组服从标准正态分布的随机样本值
备注:标准正态分布是以0为均数、以1为标准差的正态分布,记为N(0,1)。对应的正态分布曲线如下所示,即
作用:使用方法与np.random.randn()函数相同 ,通过本函数可以返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1
numpy.random.randint(low, high=None, size=None, dtype='l')
输入:
low—–为最小值
high—-为最大值
size—–为数组维度大小
dtype—为数据类型,默认的数据类型是np.int。
作用: 返回随机整数或整型数组,范围区间为[low,high),包含low,不包含high; high没有填写时,默认生成随机数的范围是[0,low
np.random.random([size])
作用:生成[0,1)之间的浮点数,与np.random.rand()功能类似
np.random.choice(a,[ size, replace, p])
参考文档1: 【python】numpy之random库简单的随机数据生成.rand()、.randint()、.randn()、.random()等(一)
参考文档2: Python中随机数的生成
参考文档3: numpy.random模块常用函数
终于写完了,我以为它很简单的………………预计1小时,结果写了2.5小时
如何用python模拟生成数据或日志
简单生成数据可用随机数:random.random()
格式化的话,用numpy可生成数据或矩阵
求助用python从数据库取数据动态生成表格的方法
一、可使用的第三方库
python中处理excel表格,常用的库有xlrd(读excel)表、xlwt(写excel)表、openpyxl(可读写excel表)等。xlrd读数据较大的excel表时效率高于openpyxl,所以我在写脚本时就采用了xlrd和xlwt这两个库。介绍及下载地址为: 这些库文件都没有提供修改现有excel表格内容的功能。一般只能将原excel中的内容读出、做完处理后,再写入一个新的excel文件。
二、常见问题
使用python处理excel表格时,发现两个个比较难缠的问题:unicode编码和excel中记录的时间。
因为python的默认字符编码都为unicode,所以打印从excel中读出的中文或读取中文名的excel表或sheet时,程序提示错误UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in range(128)。这是由于在windows中,中文使用了gb2312编码方式,python将其当作unicode和ascii来解码都不正确才报出的错误。使用VAR.encode('gb2312')即可解决打印中文的问题。(很奇怪,有的时候虽然能打印出结果,但显示的不是中文,而是一堆编码。)若要从中文文件名的excel表中读取数据,可在文件名前加‘u’表示将该中文文件名采用unicode编码。
有excel中,时间和日期都使用浮点数表示。可看到,当‘2013年3月20日’所在单元格使用‘常规’格式表示后,内容变为‘41353’;当其单元格格式改变为日期后,内容又变为了‘2013年3月20日’。而使用xlrd读出excel中的日期和时间后,得到是的一个浮点数。所以当向excel中写入的日期和时间为一个浮点数也不要紧,只需将表格的表示方式改为日期和时间,即可得到正常的表示方式。excel中,用浮点数1表示1899年12月31日。
三、常用函数
以下主要介绍xlrd、xlwt、datetime中与日期相关的函数。
import xlrd
import xlwt
from datetime
def testXlrd(filename):
book=xlrd.open_workbook(filename)
sh=book.sheet_by_index(0)
print "Worksheet name(s): ",book.sheet_names()[0]
print 'book.nsheets',book.nsheets
print 'sh.name:',sh.name,'sh.nrows:',sh.nrows,'sh.ncols:',sh.ncols
print 'A1:',sh.cell_value(rowx=0,colx=1)
#如果A3的内容为中文
print 'A2:',sh.cell_value(0,2).encode('gb2312')
def testXlwt(filename):
book=xlwt.Workbook()
sheet1=book.add_sheet('hello')
book.add_sheet('word')
sheet1.write(0,0,'hello')
sheet1.write(0,1,'world')
row1 = sheet1.row(1)
row1.write(0,'A2')
row1.write(1,'B2')
sheet1.col(0).width = 10000
sheet2 = book.get_sheet(1)
sheet2.row(0).write(0,'Sheet 2 A1')
sheet2.row(0).write(1,'Sheet 2 B1')
sheet2.flush_row_data()
sheet2.write(1,0,'Sheet 2 A3')
sheet2.col(0).width = 5000
sheet2.col(0).hidden = True
book.save(filename)
if __name__=='__main__':
testXlrd(u'你好。xls')
testXlwt('helloWord.xls')
base=datetime.date(1899,12,31).toordinal()
tmp=datetime.date(2013,07,16).toordinal()
print datetime.date.fromordinal(tmp+base-1).weekday()