本文目录一览:
如何利用python爬虫获取数据
python是一款应用非常广泛的脚本程序语言,谷歌公司的网页就是用python编写。python在生物信息、统计、网页制作、计算等多个领域都体现出了强大的功能。python和其他脚本语言如java、R、Perl一样,都可以直接在命令行里运行脚本程序。工具/原料python;CMD命令行;windows操作系统方法/步骤1、首先下载安装python,建议安装2.7版本以上,3.0版本以下,由于3.0版本以上不向下兼容,体验较差。2、打开文本编辑器,推荐editplus,notepad等,将文件保存成.py格式,editplus和notepad支持识别python语法。脚本第一行一定要写上#!usr/bin/python表示该脚本文件是可执行python脚本如果python目录不在usr/bin目录下,则替换成当前python执行程序的目录。3、编写完脚本之后注意调试、可以直接用editplus调试。调试方法可自行百度。脚本写完之后,打开CMD命令行,前提是python已经被加入到环境变量中,如果没有加入到环境变量,请百度4、在CMD命令行中,输入“python”+“空格”,即”python“;将已经写好的脚本文件拖拽到当前光标位置,然后敲回车运行即可。
怎么用python爬取相关数据
以下代码运行通过:
import requests
from bs4 import BeautifulSoup
import os
headers = {
'User-Agent': "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) "
"Chrome/22.0.1207.1 Safari/537.1"}
## 浏览器请求头(大部分网站没有这个请求头会报错)
all_url = ''
start_html = requests.get(all_url, headers=headers)
## 使用 requests 中的 get 方法来获取 all_url 的内容 headers 为请求头
print(start_html.text)
## 打印 start_html
## concent 是二进制的数据,下载图片、视频、音频、等多媒体内容时使用 concent
## 打印网页内容时使用 text
运行效果:
如何使用python爬取知乎数据并做简单分析
一、使用的技术栈:
爬虫:python27 +requests+json+bs4+time
分析工具: ELK套件
开发工具:pycharm
数据成果简单的可视化分析
1.性别分布
0 绿色代表的是男性 ^ . ^
1 代表的是女性
-1 性别不确定
可见知乎的用户男性颇多。
二、粉丝最多的top30
粉丝最多的前三十名:依次是张佳玮、李开复、黄继新等等,去知乎上查这些人,也差不多这个排名,说明爬取的数据具有一定的说服力。
三、写文章最多的top30
四、爬虫架构
爬虫架构图如下:
说明:
选择一个活跃的用户(比如李开复)的url作为入口url.并将已爬取的url存在set中。
抓取内容,并解析该用户的关注的用户的列表url,添加这些url到另一个set中,并用已爬取的url作为过滤。
解析该用户的个人信息,并存取到本地磁盘。
logstash取实时的获取本地磁盘的用户数据,并给elsticsearchkibana和elasticsearch配合,将数据转换成用户友好的可视化图形。
五、编码
爬取一个url:
解析内容:
存本地文件:
代码说明:
* 需要修改获取requests请求头的authorization。
* 需要修改你的文件存储路径。
源码下载:点击这里,记得star哦!https : // github . com/forezp/ZhihuSpiderMan六、如何获取authorization
打开chorme,打开https : // www. zhihu .com/,
登陆,首页随便找个用户,进入他的个人主页,F12(或鼠标右键,点检查)七、可改进的地方
可增加线程池,提高爬虫效率
存储url的时候我才用的set(),并且采用缓存策略,最多只存2000个url,防止内存不够,其实可以存在redis中。
存储爬取后的用户我说采取的是本地文件的方式,更好的方式应该是存在mongodb中。
对爬取的用户应该有一个信息的过滤,比如用户的粉丝数需要大与100或者参与话题数大于10等才存储。防止抓取了过多的僵尸用户。
八、关于ELK套件
关于elk的套件安装就不讨论了,具体见官网就行了。网站:https : // www . elastic . co/另外logstash的配置文件如下:
从爬取的用户数据可分析的地方很多,比如地域、学历、年龄等等,我就不一一列举了。另外,我觉得爬虫是一件非常有意思的事情,在这个内容消费升级的年代,如何在广阔的互联网的数据海洋中挖掘有价值的数据,是一件值得思考和需不断践行的事情。