您的位置:

关于python多线程dask的信息

本文目录一览:

python 怎么实现多线程的

线程也就是轻量级的进程,多线程允许一次执行多个线程,Python是多线程语言,它有一个多线程包,GIL也就是全局解释器锁,以确保一次执行单个线程,一个线程保存GIL并在将其传递给下一个线程之前执行一些操作,也就产生了并行执行的错觉。

python分布式框架有哪些

Dask是Python的分布式计算框架,它支持分布式的DataFrame,也就是pandas的DataFrame,二者接口完美兼容,但Dask是分布式计算的框架,可以支持内存无法装载的数据,进行计算,它也支持对一般的python程序进行分布式计算。是非常优秀的Python框架。本文主要介绍Dask的几种不同的调度器的使用。

Dask支持多种调度器,从单线程、多线程、多进程到本地分布式和集群分布式,各种调度器在不同情况下有不同的作用,本文来源于Dask官方文档的翻译,主要向大家介绍这五种调度器的使用情景和方式。最后提供了如何在不同情境下设置Dask调度器的方法。

python之多线程原理

并发:逻辑上具备同时处理多个任务的能力。

并行:物理上在同一时刻执行多个并发任务。

举例:开个QQ,开了一个进程,开了微信,开了一个进程。在QQ这个进程里面,传输文字开一个线程、传输语音开了一个线程、弹出对话框又开了一个线程。

总结:开一个软件,相当于开了一个进程。在这个软件运行的过程里,多个工作同时运转,完成了QQ的运行,那么这个多个工作分别有多个线程。

线程和进程之间的区别:

进程在python中的使用,对模块threading进行操作,调用的这个三方库。可以通过 help(threading) 了解其中的方法、变量使用情况。也可以使用 dir(threading) 查看目录结构。

current_thread_num = threading.active_count() # 返回正在运行的线程数量

run_thread_len = len(threading.enumerate()) # 返回正在运行的线程数量

run_thread_list = threading.enumerate() # 返回当前运行线程的列表

t1=threading.Thread(target=dance) #创建两个子线程,参数传递为函数名

t1.setDaemon(True) # 设置守护进程,守护进程:主线程结束时自动退出子线程。

t1.start() # 启动子线程

t1.join() # 等待进程结束 exit()`# 主线程退出,t1子线程设置了守护进程,会自动退出。其他子线程会继续执行。

如何评价python的分析型并行计算库dask

试用过,在中等数据规模下分布式 dask 兼容性还不错。 挺适合已经在 python pandas scikit-learn xgboost 这条线上的中小规模数据项目。

我们前段时间和Dask 的作者聊了下,可惜这家伙跑到纽约去了不能直接来我们这边做 adviser……于是我们招了个实习生开搞,目前现有的数据pipeline已经移植的差不多了。