您的位置:

fpm是哪个php(fpm命令)

本文目录一览:

如何查看一个正在运行的php-fpm进程使用的php命令地址

应该是这样的PHP-FPM是一个PHP FastCGI管理器,是只用于PHP的。

PHP-FPM其实是PHP源代码的一个补丁,旨在将FastCGI进程管理整合进PHP包中。必须将它patch到你的PHP源代码中,在编译安装PHP后才可以使用。

新版PHP已经集成php-fpm了,不再是第三方的包了,推荐使用。PHP-FPM提供了更好的PHP进程管理方式,可以有效控制内存和进程、可以平滑重载PHP配置,比spawn-fcgi具有更多优点,所以被PHP官方收录了。在./configure的时候带 –enable-fpm参数即可开启PHP-FPM,其它参数都是配置php的,如果还有不明白的可以上后盾网去问问专家教师,这样不就懂了或者不好意思,可以去后盾人自己找找相关教材看看不就会了,希望能帮到你,给个采纳吧谢谢

ubuntu 安装php5-fpm是什么版本

你可以自己选择版本,现在一般安装5.6的,因为是教新的稳定版。php7是最新版,但是没经过长时间检验,出了问题也不好解决。php-fpm是php的一种运行模式,版本就是php版本。

关于FastCGI、php-cgi、php-fpm的区别是什么,各自有什么用途,以及相互间的关系是什么?

fastcgi是一个通用网关接口,用于web服务器(iis, apache)和应用程序通信。

php-cgi是php平台的cgi程序

以上两个结合,可以使php整合在web服务中

php-fpm是一个独立的php-fcgi管理软件,它要整合进web服务中,需要使用代理模式

一般与nginx搭配。也可以与apache搭配

php-fpm一般不直接作为服务容器提供外网访问,而是通过常用web容器作代理

php作为服务器端的解析程序,运行模式分很多种,fastcgi, mod_php, proxy(代理)等。

与iis搭配时一般采用fast-cgi模式,iis自带fast-cgi引擎,配置好php参数即可

与apache搭配,在windows平台下,一般也是fast-cgi模式,在linux系统中一般是mod_php模式,把php作为一个子模块加载

也可以配置php-fpm 然后在apache中配置代理模式

与nginx搭配,一般就是用php-fpm+代理模式了

php中fastcgi和php-fpm是什么东西

Fastcgi是CGI的升级版,一种语言无关的协议,用来沟通程序(如PHP, Python, Java)和Web服务器(Apache2, Nginx), 理论上任何语言编写的程序都可以通过Fastcgi来提供Web服务。

Fastcgi的特点是会在一个进程中依次完成多个请求,以达到提高效率的目的,大多数Fastcgi实现都会维护一个进程池。

而PHP-fpm就是针对于PHP的,Fastcgi的一种实现,他负责管理一个进程池,来处理来自Web服务器的请求。目前,PHP-fpm是内置于PHP的。

PHP中的FPM是做什么的

FPM(FastCGI 进程管理器)用于替换 PHP FastCGI 的大部分附加功能,对于高负载网站是非常有用的。它的功能包括:

支持平滑停止/启动的高级进程管理功能;

可以工作于不同的 uid/gid/chroot 环境下,并监听不同的端口和使用不同的 php.ini 配置文件(可取代 safe_mode 的设置);

stdout 和 stderr 日志记录;

在发生意外情况的时候能够重新启动并缓存被破坏的 opcode;

文件上传优化支持;

"慢日志" - 记录脚本(不仅记录文件名,还记录 PHP backtrace 信息,可以使用 ptrace或者类似工具读取和分析远程进程的运行数据)运行所导致的异常缓慢;

fastcgi_finish_request() - 特殊功能:用于在请求完成和刷新数据后,继续在后台执行耗时的工作(录入视频转换、统计处理等);

动态/静态子进程产生;

基本 SAPI 运行状态信息(类似Apache的 mod_status);

基于 php.ini 的配置文件。

php-fpm master worker 关系介绍

## 1.3 FPM

php7-internal/fpm.md at master · pangudashu/php7-internal · GitHub

1.3 FPM

1.3.1 概述

FPM(FastCGI Process Manager)是PHP FastCGI运行模式的一个进程管理器,从它的定义可以看出,FPM的核心功能是进程管理,那么它用来管理什么进程呢?这个问题就需要从FastCGI说起了。

FastCGI是Web服务器(如:Nginx、Apache)和处理程序之间的一种通信协议,它是与Http类似的一种应用层通信协议,注意:它只是一种协议!

前面曾一再强调,PHP只是一个脚本解析器,你可以把它理解为一个普通的函数,输入是PHP脚本。输出是执行结果,假如我们想用PHP代替shell,在命令行中执行一个文件,那么就可以写一个程序来嵌入PHP解析器,这就是cli模式,这种模式下PHP就是普通的一个命令工具。接着我们又想:能不能让PHP处理http请求呢?这时就涉及到了网络处理,PHP需要接收请求、解析协议,然后处理完成返回请求。在网络应用场景下,PHP并没有像Golang那样实现http网络库,而是实现了FastCGI协议,然后与web服务器配合实现了http的处理,web服务器来处理http请求,然后将解析的结果再通过FastCGI协议转发给处理程序,处理程序处理完成后将结果返回给web服务器,web服务器再返回给用户,如下图所示。

PHP实现了FastCGI协议的解析,但是并没有具体实现网络处理,一般的处理模型:多进程、多线程,多进程模型通常是主进程只负责管理子进程,而基本的网络事件由各个子进程处理,nginx、fpm就是这种模式;另一种多线程模型与多进程类似,只是它是线程粒度,通常会由主线程监听、接收请求,然后交由子线程处理,memcached就是这种模式,有的也是采用多进程那种模式:主线程只负责管理子线程不处理网络事件,各个子线程监听、接收、处理请求,memcached使用udp协议时采用的是这种模式。

1.3.2 基本实现

概括来说,fpm的实现就是创建一个master进程,在master进程中创建并监听socket,然后fork出多个子进程,这些子进程各自accept请求,子进程的处理非常简单,它在启动后阻塞在accept上,有请求到达后开始读取请求数据,读取完成后开始处理然后再返回,在这期间是不会接收其它请求的,也就是说fpm的子进程同时只能响应一个请求,只有把这个请求处理完成后才会accept下一个请求,这一点与nginx的事件驱动有很大的区别,nginx的子进程通过epoll管理套接字,如果一个请求数据还未发送完成则会处理下一个请求,即一个进程会同时连接多个请求,它是非阻塞的模型,只处理活跃的套接字。

fpm的master进程与worker进程之间不会直接进行通信,master通过共享内存获取worker进程的信息,比如worker进程当前状态、已处理请求数等,当master进程要杀掉一个worker进程时则通过发送信号的方式通知worker进程。

fpm可以同时监听多个端口,每个端口对应一个worker pool,而每个pool下对应多个worker进程,类似nginx中server概念。

在php-fpm.conf中通过[pool name]声明一个worker pool:

[web1]

listen = 127.0.0.1:9000

...

[web2]

listen = 127.0.0.1:9001

...

启动fpm后查看进程:ps -aux|grep fpm

root271550.00.11447042720?        Ss15:160:00php-fpm: masterprocess(/usr/local/php7/etc/php-fpm.conf)nobody  27156  0.0  0.1 144676  2416 ?        S    15:16  0:00 php-fpm: pool web1nobody  27157  0.0  0.1 144676  2416 ?        S    15:16  0:00 php-fpm: pool web1nobody  27159  0.0  0.1 144680  2376 ?        S    15:16  0:00 php-fpm: pool web2nobody  27160  0.0  0.1 144680  2376 ?        S    15:16  0:00 php-fpm: pool web2

具体实现上worker pool通过fpm_worker_pool_s这个结构表示,多个worker pool组成一个单链表:

structfpm_worker_pool_s {structfpm_worker_pool_s *next;//指向下一个worker poolstructfpm_worker_pool_config_s *config;//conf配置:pm、max_children、start_servers...intlistening_socket;//监听的套接字...//以下这个值用于master定时检查、记录worker数structfpm_child_s *children;//当前pool的worker链表intrunning_children;//当前pool的worker运行总数intidle_spawn_rate;intwarn_max_children;structfpm_scoreboard_s *scoreboard;//记录worker的运行信息,比如空闲、忙碌worker数...}

1.3.3 FPM的初始化

接下来看下fpm的启动流程,从main()函数开始:

//sapi/fpm/fpm/fpm_main.cintmain(intargc,char*argv[]){    ...//注册SAPI:将全局变量sapi_module设置为cgi_sapi_modulesapi_startup(cgi_sapi_module);    ...//执行php_module_starup()if(cgi_sapi_module.startup(cgi_sapi_module) == FAILURE) {returnFPM_EXIT_SOFTWARE;    }    ...//初始化if(0fpm_init(...)){        ...    }    ...    fpm_is_running =1;    fcgi_fd =fpm_run(max_requests);//后面都是worker进程的操作,master进程不会走到下面parent =0;    ...}

fpm_init()主要有以下几个关键操作:

(1)fpm_conf_init_main():

解析php-fpm.conf配置文件,分配worker pool内存结构并保存到全局变量中:fpm_worker_all_pools,各worker pool配置解析到fpm_worker_pool_s-config中。

(2)fpm_scoreboard_init_main():  分配用于记录worker进程运行信息的共享内存,按照worker pool的最大worker进程数分配,每个worker pool分配一个fpm_scoreboard_s结构,pool下对应的每个worker进程分配一个fpm_scoreboard_proc_s结构,各结构的对应关系如下图。

(3)fpm_signals_init_main():

staticintsp[2];intfpm_signals_init_main(){structsigactionact;//创建一个全双工管道if(0socketpair(AF_UNIX, SOCK_STREAM,0, sp)) {return-1;    }//注册信号处理handleract.sa_handler= sig_handler;sigfillset(act.sa_mask);if(0sigaction(SIGTERM,  act,0) ||0sigaction(SIGINT,  act,0) ||0sigaction(SIGUSR1,  act,0) ||0sigaction(SIGUSR2,  act,0) ||0sigaction(SIGCHLD,  act,0) ||0sigaction(SIGQUIT,  act,0)) {return-1;    }return0;}

这里会通过socketpair()创建一个管道,这个管道并不是用于master与worker进程通信的,它只在master进程中使用,具体用途在稍后介绍event事件处理时再作说明。另外设置master的信号处理handler,当master收到SIGTERM、SIGINT、SIGUSR1、SIGUSR2、SIGCHLD、SIGQUIT这些信号时将调用sig_handler()处理:

staticvoidsig_handler(intsigno){staticconstcharsig_chars[NSIG +1] = {        [SIGTERM] ='T',        [SIGINT]  ='I',        [SIGUSR1] ='1',        [SIGUSR2] ='2',        [SIGQUIT] ='Q',        [SIGCHLD] ='C'};chars;    ...    s = sig_chars[signo];//将信号通知写入管道sp[1]端write(sp[1], s,sizeof(s));    ...}

(4)fpm_sockets_init_main()

创建每个worker pool的socket套接字。

(5)fpm_event_init_main():

启动master的事件管理,fpm实现了一个事件管理器用于管理IO、定时事件,其中IO事件通过kqueue、epoll、poll、select等管理,定时事件就是定时器,一定时间后触发某个事件。

在fpm_init()初始化完成后接下来就是最关键的fpm_run()操作了,此环节将fork子进程,启动进程管理器,另外master进程将不会再返回,只有各worker进程会返回,也就是说fpm_run()之后的操作均是worker进程的。

intfpm_run(int*max_requests){structfpm_worker_pool_s *wp;for(wp = fpm_worker_all_pools; wp; wp = wp-next) {//调用fpm_children_make() fork子进程is_parent =fpm_children_create_initial(wp);if(!is_parent) {gotorun_child;        }    }//master进程将进入event循环,不再往下走fpm_event_loop(0);run_child://只有worker进程会到这里*max_requests = fpm_globals.max_requests;returnfpm_globals.listening_socket;//返回监听的套接字}

在fork后worker进程返回了监听的套接字继续main()后面的处理,而master将永远阻塞在fpm_event_loop(),接下来分别介绍master、worker进程的后续操作。

1.3.4 请求处理

fpm_run()执行后将fork出worker进程,worker进程返回main()中继续向下执行,后面的流程就是worker进程不断accept请求,然后执行PHP脚本并返回。整体流程如下:

(1)等待请求:  worker进程阻塞在fcgi_accept_request()等待请求;

(2)解析请求:  fastcgi请求到达后被worker接收,然后开始接收并解析请求数据,直到request数据完全到达;

(3)请求初始化:  执行php_request_startup(),此阶段会调用每个扩展的:PHP_RINIT_FUNCTION();

(4)编译、执行:  由php_execute_script()完成PHP脚本的编译、执行;

(5)关闭请求:  请求完成后执行php_request_shutdown(),此阶段会调用每个扩展的:PHP_RSHUTDOWN_FUNCTION(),然后进入步骤(1)等待下一个请求。

intmain(intargc,char*argv[]){    ...    fcgi_fd =fpm_run(max_requests);    parent =0;//初始化fastcgi请求request =fpm_init_request(fcgi_fd);//worker进程将阻塞在这,等待请求while(EXPECTED(fcgi_accept_request(request) =0)) {SG(server_context) = (void*) request;init_request_info();//请求开始if(UNEXPECTED(php_request_startup() == FAILURE)) {            ...        }        ...fpm_request_executing();//编译、执行PHP脚本php_execute_script(file_handle);        ...//请求结束php_request_shutdown((void*)0);        ...    }    ...//worker进程退出php_module_shutdown();    ...}

worker进程一次请求的处理被划分为5个阶段:

FPM_REQUEST_ACCEPTING:  等待请求阶段

FPM_REQUEST_READING_HEADERS:  读取fastcgi请求header阶段

FPM_REQUEST_INFO:  获取请求信息阶段,此阶段是将请求的method、query stirng、request uri等信息保存到各worker进程的fpm_scoreboard_proc_s结构中,此操作需要加锁,因为master进程也会操作此结构

FPM_REQUEST_EXECUTING:  执行请求阶段

FPM_REQUEST_END:  没有使用

FPM_REQUEST_FINISHED:  请求处理完成

worker处理到各个阶段时将会把当前阶段更新到fpm_scoreboard_proc_s-request_stage,master进程正是通过这个标识判断worker进程是否空闲的。

1.3.5 进程管理

这一节我们来看下master是如何管理worker进程的,首先介绍下三种不同的进程管理方式:

static:  这种方式比较简单,在启动时master按照pm.max_children配置fork出相应数量的worker进程,即worker进程数是固定不变的

dynamic:  动态进程管理,首先在fpm启动时按照pm.start_servers初始化一定数量的worker,运行期间如果master发现空闲worker数低于pm.min_spare_servers配置数(表示请求比较多,worker处理不过来了)则会fork worker进程,但总的worker数不能超过pm.max_children,如果master发现空闲worker数超过了pm.max_spare_servers(表示闲着的worker太多了)则会杀掉一些worker,避免占用过多资源,master通过这4个值来控制worker数

ondemand:  这种方式一般很少用,在启动时不分配worker进程,等到有请求了后再通知master进程fork worker进程,总的worker数不超过pm.max_children,处理完成后worker进程不会立即退出,当空闲时间超过pm.process_idle_timeout后再退出

前面介绍到在fpm_run()master进程将进入fpm_event_loop():

voidfpm_event_loop(interr){//创建一个io read的监听事件,这里监听的就是在fpm_init()阶段中通过socketpair()创建管道sp[0]//当sp[0]可读时将回调fpm_got_signal()fpm_event_set(signal_fd_event,fpm_signals_get_fd(), FPM_EV_READ, fpm_got_signal,NULL);fpm_event_add(signal_fd_event,0);//如果在php-fpm.conf配置了request_terminate_timeout则启动心跳检查if(fpm_globals.heartbeat0) {fpm_pctl_heartbeat(NULL,0,NULL);    }//定时触发进程管理fpm_pctl_perform_idle_server_maintenance_heartbeat(NULL,0,NULL);//进入事件循环,master进程将阻塞在此while(1) {        ...//等待IO事件ret = module-wait(fpm_event_queue_fd, timeout);        ...//检查定时器事件...    }}

这就是master整体的处理,其进程管理主要依赖注册的几个事件,接下来我们详细分析下这几个事件的功能。

(1)sp[1]管道可读事件:

在fpm_init()阶段master曾创建了一个全双工的管道:sp,然后在这里创建了一个sp[0]可读的事件,当sp[0]可读时将交由fpm_got_signal()处理,向sp[1]写数据时sp[0]才会可读,那么什么时机会向sp[1]写数据呢?前面已经提到了:当master收到注册的那几种信号时会写入sp[1]端,这个时候将触发sp[0]可读事件。

这个事件是master用于处理信号的,我们根据master注册的信号逐个看下不同用途:

SIGINT/SIGTERM/SIGQUIT:  退出fpm,在master收到退出信号后将向所有的worker进程发送退出信号,然后master退出

SIGUSR1:  重新加载日志文件,生产环境中通常会对日志进行切割,切割后会生成一个新的日志文件,如果fpm不重新加载将无法继续写入日志,这个时候就需要向master发送一个USR1的信号

SIGUSR2:  重启fpm,首先master也是会向所有的worker进程发送退出信号,然后master会调用execvp()重新启动fpm,最后旧的master退出

SIGCHLD:  这个信号是子进程退出时操作系统发送给父进程的,子进程退出时,内核将子进程置为僵尸状态,这个进程称为僵尸进程,它只保留最小的一些内核数据结构,以便父进程查询子进程的退出状态,只有当父进程调用wait或者waitpid函数查询子进程退出状态后子进程才告终止,fpm中当worker进程因为异常原因(比如coredump了)退出而非master主动杀掉时master将受到此信号,这个时候父进程将调用waitpid()查下子进程的退出,然后检查下是不是需要重新fork新的worker

具体处理逻辑在fpm_got_signal()函数中,这里不再罗列。

(2)fpm_pctl_perform_idle_server_maintenance_heartbeat():

这是进程管理实现的主要事件,master启动了一个定时器,每隔1s触发一次,主要用于dynamic、ondemand模式下的worker管理,master会定时检查各worker pool的worker进程数,通过此定时器实现worker数量的控制,处理逻辑如下:

staticvoidfpm_pctl_perform_idle_server_maintenance(structtimeval*now){for(wp = fpm_worker_all_pools; wp; wp = wp-next) {structfpm_child_s *last_idle_child =NULL;//空闲时间最久的workerintidle =0;//空闲worker数intactive =0;//忙碌worker数for(child = wp-children; child; child = child-next) {//根据worker进程的fpm_scoreboard_proc_s-request_stage判断if(fpm_request_is_idle(child)) {//找空闲时间最久的worker...                idle++;            }else{                active++;            }        }        ...//ondemand模式if(wp-config-pm== PM_STYLE_ONDEMAND) {if(!last_idle_child)continue;fpm_request_last_activity(last_idle_child, last);fpm_clock_get(now);if(last.tv_sec now.tv_sec- wp-config-pm_process_idle_timeout) {//如果空闲时间最长的worker空闲时间超过了process_idle_timeout则杀掉该workerlast_idle_child-idle_kill=1;fpm_pctl_kill(last_idle_child-pid, FPM_PCTL_QUIT);            }continue;        }//dynamicif(wp-config-pm!= PM_STYLE_DYNAMIC)continue;if(idle wp-config-pm_max_spare_servers last_idle_child) {//空闲worker太多了,杀掉last_idle_child-idle_kill=1;fpm_pctl_kill(last_idle_child-pid, FPM_PCTL_QUIT);            wp-idle_spawn_rate=1;continue;        }if(idle wp-config-pm_min_spare_servers) {//空闲worker太少了,如果总worker数未达到max数则fork...        }    }}

(3)fpm_pctl_heartbeat():

这个事件是用于限制worker处理单个请求最大耗时的,php-fpm.conf中有一个request_terminate_timeout的配置项,如果worker处理一个请求的总时长超过了这个值那么master将会向此worker进程发送kill -TERM信号杀掉worker进程,此配置单位为秒,默认值为0表示关闭此机制,另外fpm打印的slow log也是在这里完成的。

staticvoidfpm_pctl_check_request_timeout(structtimeval*now){structfpm_worker_pool_s *wp;for(wp = fpm_worker_all_pools; wp; wp = wp-next) {intterminate_timeout = wp-config-request_terminate_timeout;intslowlog_timeout = wp-config-request_slowlog_timeout;structfpm_child_s *child;if(terminate_timeout || slowlog_timeout) {for(child = wp-children; child; child = child-next) {//检查当前当前worker处理的请求是否超时fpm_request_check_timed_out(child, now, terminate_timeout, slowlog_timeout);            }        }    }}

除了上面这几个事件外还有一个没有提到,那就是ondemand模式下master监听的新请求到达的事件,因为ondemand模式下fpm启动时是不会预创建worker的,有请求时才会生成子进程,所以请求到达时需要通知master进程,这个事件是在fpm_children_create_initial()时注册的,事件处理函数为fpm_pctl_on_socket_accept(),具体逻辑这里不再展开,比较容易理解。

到目前为止我们已经把fpm的核心实现介绍完了,事实上fpm的实现还是比较简单的。