您的位置:

bp算法代码python复现的简单介绍

本文目录一览:

python 利用pybrain库实现的BP神经网络 算法 不会画收敛图 求助

这个神经网络只能处理分两类的的情况,这是由这个神经网络的结构决定了的。 如果想应付分多类的情况,必须对输出层作softmax处理。

怎样用python构建一个卷积神经网络

用keras框架较为方便

首先安装anaconda,然后通过pip安装keras

以下转自wphh的博客。

#coding:utf-8

'''

    GPU run command:

        THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cnn.py

    CPU run command:

        python cnn.py

2016.06.06更新:

这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。

现在keras的API也发生了一些的变化,建议及推荐直接上keras.io看更加详细的教程。

'''

#导入各种用到的模块组件

from __future__ import absolute_import

from __future__ import print_function

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers.core import Dense, Dropout, Activation, Flatten

from keras.layers.advanced_activations import PReLU

from keras.layers.convolutional import Convolution2D, MaxPooling2D

from keras.optimizers import SGD, Adadelta, Adagrad

from keras.utils import np_utils, generic_utils

from six.moves import range

from data import load_data

import random

import numpy as np

np.random.seed(1024)  # for reproducibility

#加载数据

data, label = load_data()

#打乱数据

index = [i for i in range(len(data))]

random.shuffle(index)

data = data[index]

label = label[index]

print(data.shape[0], ' samples')

#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数

label = np_utils.to_categorical(label, 10)

###############

#开始建立CNN模型

###############

#生成一个model

model = Sequential()

#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。

#border_mode可以是valid或者full,具体看这里说明:

#激活函数用tanh

#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))

model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) 

model.add(Activation('tanh'))

#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数

#激活函数用tanh

#采用maxpooling,poolsize为(2,2)

model.add(Convolution2D(8, 3, 3, border_mode='valid'))

model.add(Activation('tanh'))

model.add(MaxPooling2D(pool_size=(2, 2)))

#第三个卷积层,16个卷积核,每个卷积核大小3*3

#激活函数用tanh

#采用maxpooling,poolsize为(2,2)

model.add(Convolution2D(16, 3, 3, border_mode='valid')) 

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

#全连接层,先将前一层输出的二维特征图flatten为一维的。

#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4

#全连接有128个神经元节点,初始化方式为normal

model.add(Flatten())

model.add(Dense(128, init='normal'))

model.add(Activation('tanh'))

#Softmax分类,输出是10类别

model.add(Dense(10, init='normal'))

model.add(Activation('softmax'))

#############

#开始训练模型

##############

#使用SGD + momentum

#model.compile里的参数loss就是损失函数(目标函数)

sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])

#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.

#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。

#validation_split=0.2,将20%的数据作为验证集。

model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)

"""

#使用data augmentation的方法

#一些参数和调用的方法,请看文档

datagen = ImageDataGenerator(

        featurewise_center=True, # set input mean to 0 over the dataset

        samplewise_center=False, # set each sample mean to 0

        featurewise_std_normalization=True, # divide inputs by std of the dataset

        samplewise_std_normalization=False, # divide each input by its std

        zca_whitening=False, # apply ZCA whitening

        rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)

        width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)

        height_shift_range=0.2, # randomly shift images vertically (fraction of total height)

        horizontal_flip=True, # randomly flip images

        vertical_flip=False) # randomly flip images

# compute quantities required for featurewise normalization 

# (std, mean, and principal components if ZCA whitening is applied)

datagen.fit(data)

for e in range(nb_epoch):

    print('-'*40)

    print('Epoch', e)

    print('-'*40)

    print("Training...")

    # batch train with realtime data augmentation

    progbar = generic_utils.Progbar(data.shape[0])

    for X_batch, Y_batch in datagen.flow(data, label):

        loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)

        progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )

"""

有没有用python实现的遗传算法优化BP神经网络的代码

下面是函数实现的代码部分:

clc

clear all

close all

%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签

%样本数据就是前面问题描述中列出的数据

%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数

load data

% 初始隐层神经元个数

hiddennum=31;

% 输入向量的最大值和最小值

threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];

inputnum=size(P,1); % 输入层神经元个数

outputnum=size(T,1); % 输出层神经元个数

w1num=inputnum*hiddennum; % 输入层到隐层的权值个数

w2num=outputnum*hiddennum;% 隐层到输出层的权值个数

N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数

%% 定义遗传算法参数

NIND=40; %个体数目

MAXGEN=50; %最大遗传代数

PRECI=10; %变量的二进制位数

GGAP=0.95; %代沟

px=0.7; %交叉概率

pm=0.01; %变异概率

trace=zeros(N+1,MAXGEN); %寻优结果的初始值

FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器

Chrom=crtbp(NIND,PRECI*N); %初始种群

%% 优化

gen=0; %代计数器

X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换

ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值

while gen

BP神经网络——Python简单实现三层神经网络(Numpy)

我们将在Python中创建一个NeuralNetwork类,以训练神经元以给出准确的预测。该课程还将具有其他帮助程序功能。

1. 应用Sigmoid函数

我们将使用 Sigmoid函数 (它绘制一条“ S”形曲线)作为神经网络的激活函数。

2. 训练模型

这是我们将教神经网络做出准确预测的阶段。每个输入将具有权重(正或负)。

这意味着具有大量正权重或大量负权重的输入将对结果输出产生更大的影响。

我们最初是将每个权重分配给一个随机数。

本文参考翻译于此网站 —— 原文